Методика проведения и оформление результатов проверки заземления

metodika provedeniya i oformlenie rezultatov proverki zazemleniya

 

Содержание

Как проверить качество заземления

Согласно Правил устройства электроустановок, любые электрические сети и оборудование, работающее с напряжением свыше 50 вольт переменного и 120 вольт постоянного тока, должны иметь защитное заземление. Это касается помещений без признаков условий повышенной опасности. В опасных помещениях (повышенная влажность, токопроводящая пыль и прочее), требования еще жестче. Но мы в данном материале будем рассматривать в основном жилые дома. По умолчанию принимаем, что заземление должно быть.

При монтаже новых линий энергоснабжения, заземление будет установлено, и владелец помещения может за этим проследить (или подключить его самостоятельно). В случае, когда вы проживаете (работаете) в уже готовом помещении, возникает вопрос: как проверить заземление? В первую очередь, надо убедиться в том, что оно у вас есть. Вне зависимости от формального соблюдения ПУЭ, это касается жизни и здоровья людей.

Проверка наличия и правильности подключения защитного заземления

Как минимум, необходимо заглянуть в распределительный щит вашей квартиры (дома, мастерской).

Проверка заземления

По умолчанию принимаем условие: электропитание однофазное. Так будет проще разобраться в материале.

В щитке должно быть три независимых входных линии:

  • Фаза (как правило, обозначается проводом с коричневой изоляцией). Идентифицируется индикаторной отверткой.
  • Рабочий ноль (цветовая маркировка — синяя или голубая).
  • Защитное заземление (желто-зеленая изоляция).

Если электропитающий вход выполнен именно так, скорее всего, заземление у вас есть. Далее проверяем независимость рабочего ноля и защитного заземления между собой. К сожалению, некоторые электрики (даже в профессиональных бригадах), вместо заземления используют так называемое зануление. В качестве защиты используется рабочий ноль: к нему просто подсоединяется заземляющая шина. Это является нарушением Правил устройства электроустановок, использование такой схемы опасно.

Как проверить, заземление или зануление подключено в качестве защиты?

Если соединение проводов очевидно — защитное заземление отсутствует: у вас организовано зануление. Однако видимое правильное подключение еще не означает, что «земля» есть и она работает. Проверка заземления включает в себя несколько этапов. Начинаем с измерения напряжения между защитным заземлением и рабочим нулем.

Проверка заземления 2

Фиксируем значение между нулем и фазой, и тут же проводим измерение между фазой и защитным заземлением. Если значения одинаковые — «земляная» шина имеет контакт с рабочим нулем после физического заземления. То есть, она соединена с нулевой шиной. Это запрещено ПУЭ, потребуется переделка системы подключения. Если показания отличаются друг от друга — у вас правильная «земля».

Дальнейшее измерение заземления проводится с помощью специального оборудования. На этом остановимся подробнее.

Как устроено заземление, и зачем проверять его параметры

Не вдаваясь в подробности, можно сказать, что заземление нужно для соединения корпуса электроустановки с рабочим нулем. Глядя на несколько абзацев выше, можно подумать, что это абсурд. На самом деле имеется ввиду возможность протекания тока от защитного заземления, через физическую землю (грунт), до рабочего нуля ближайшей подстанции. Фактически, это будет короткое замыкание.

Соответственно, при попадании фазы на корпус электроустановки, сработает защитный автомат, и поражения электротоком не будет.

Зачем же нужна проверка сопротивления заземления? Для организации аварийного короткого замыкания, необходима большая сила тока. Если сопротивление контура заземления будет слишком велико, сила тока (в соответствии с законом Ома) снизится, и защитный автомат не сработает.

Еще одна опасность большого сопротивления защитной «земли» в том, что сопротивление тела человека может оказаться меньше. Тогда, при касании рукой аварийной электроустановки, вы гарантированно будете поражены электротоком.

Важно! Само по себе заземление не дает 100% защиты от поражения электротоком.

Когда на корпусе электроустановки окажется фаза, часть напряжения уйдет на компенсацию утечки в физическую землю. Если остаток потенциала превысит 50 вольт, опасность сохранится.

Равно как и защитный автомат без заземления не отключит фазу при попадании на корпус. Он сработает лишь при замыкании нуля с фазой. Полную защиту дает установка автомата и одновременное подключение контура защитной «земли». Существенно повышает уровень безопасности еще и УЗО.

Безопасность

И, наконец о том, что представляет собой контур заземления.

Если вкратце, это несколько металлических штырей (при нормальных природных условиях — три), глубоко погруженных в грунт, соединенных проводниками между собой и шиной заземления в здании.

Заземление 2

Проверка параметров защитного заземления

Кроме очевидных составляющих системы защитной «земли»: таких, как контактная колодка, провода, идущие к электроустановкам, соединение с контуром в грунте, важную роль в обеспечении защиты играет собственно земля. Соответственно надо убедиться в следующем:

  1. Между всеми элементами контура (штыри, соединительные шины, проводник в помещение до клеммной колодки) есть надежное электрическое соединение с минимальным сопротивлением.
  2. Попавшее на контур напряжение (в случае аварии), растекается по физической земле с максимальным током. Это возможно лишь при хорошем контакте между металлом и грунтом.
  3. Физические условия местности (грунта) могут обеспечить надежный контакт даже при плохих (с точки зрения электротока) условиях. А именно, пересыхание грунта, растрескивание земли в местах установки заземлителей.

Разумеется, никто не проводит измерения параметров на каждом элементе заземляющей системы. Это потребуется лишь в случае несоответствия нормам, для поиска так называемого «слабого звена».

По какому принципу проводится проверка защитного контура заземления?

Необходимо создать полный аналог заведомо работающего контура, и сравнить показатели с тестируемым объектом. Для этого существуют комплексы проверки рабочего заземления.

Проверка заземления 3

Сразу оговоримся: изготовить такой комплект самостоятельно возможно, но дорого и нецелесообразно. Равно как и проверка параметров защитного заземления с помощью стандартных средств измерений (мультиметр), не покажет достоверной картины. Да и сформировать высокое напряжение, необходимое для измерения параметров растекания, тестер не сможет. Поэтому лучше либо брать оборудование напрокат, либо приглашать мастера.

Вы можете купить подобный набор, но вряд ли он себя окупит в обозримом будущем. Даже с учетом того, периодичность проверки заземляющих устройств составляет один раз в году (и для жилых, и для промышленных объектов), проще получать разовый доступ к оборудованию.

Типовая схема включения прибора

Проверка заземления 4

Работает принцип одновременного использования вольтметра-амперметра на испытуемом участке грунта. Есть три величины: сопротивление, напряжение, сила тока. Параметры вычисляются по закону Ома. Нам известно первоначальное напряжение, а прибор поддерживает силу тока. Зная падение напряжения между тестируемыми стержнями, мы с высокой точностью можем вычислить сопротивление контура заземления.

Погрешность есть, но она несущественна в сравнении с измеряемыми величинами. Сопротивление контакта тестового электрода с грунтом вообще принимается за нулевое, при условии, что стержень чистый и не покрыт коррозией.

Большинство современных приборов сразу выдают готовые параметры защитного заземления, а в старых (при этом не менее надежных и точных) конструкциях — надо будет выполнить простую операцию деления. В соответствии с законом Ома.

Проверка заземления мегаомметром проходит по тому же принципу, только погрешность измерения будет выше. Все-таки земля не является проводником электричества в привычном смысле.

Проверка заземления 5

Мегаомметр лучше использовать для оценки иных факторов безопасности

Например, сопротивления изоляции. Речь пойдет не о прямой опасности. То есть, если вы схватитесь рукой за провод, в котором диэлектрические свойства изоляции в норме, вы не получите поражение электротоком.

Но есть и дополнительная опасность: пробой изоляции под нагрузкой. Этот неприятный факт приводит к сбоям в работе, и что более страшно — к возгораниям электроцепи.

Мегаомметр для измерения сопротивления изоляции представляет собой генератор напряжения и точный прибор в одном корпусе.

Проверка заземления 6

Классический вариант (с успехом применяется и сейчас), вырабатывает напряжение до 2500 вольт. Не стоит бояться, токи при работе мизерные. Но держаться нужно только за изолированные рукояти измерительных кабелей.

Высокий потенциал напряжения легко выявляет изъяны в изоляции, и стрелка прибора показывает истинное сопротивление. Перед началом работ следует отключить все подающие напряжение автоматы, и избавиться от остаточного потенциала: заземлить провод.

Читайте также  Заземление электроустановок до 1000В по ПУЭ 7

Для измерения пробоя между проводами в одном кабеле используются два провода. Они подсоединяются к жилам отключенного кабеля, и проводится замер. Если сопротивление ниже нормы, кабель отбраковывается. Никто не знает, когда место потенциального пробоя принесет неприятности.

Для измерения утечки на землю, один провод соединяется с защитным заземлением (в зоне прокладки тестируемого кабеля), а второй к центральной жиле. Напряжение для тестирования должно быть выше. Если провод невозможно приложить к «земле», измерение проводится при помощи прикладывания второго электрода к внешней поверхности изоляции.

При наличии экрана (бронировки кабеля), применяется трехпроводная система замеров. третий провод соединяется с экраном тестируемого кабеля.

Общая схема именно такая, но каждая модель прибора имеет собственную инструкцию. В современных мегаомметрах с цифровым дисплеем, разобраться еще проще, чем в старых стрелочных.

Проверка заземления 7

С помощью мегаомметра можно тестировать еще и обмотки двигателей. Но это отдельная тема. Информация для тех, кто думает, что все эти приборы узкопрофильные: с помощью системы шунтов, можно превратить мегаомметр в прецизионный омметр или вольтметр.

Методика проведения и оформление результатов проверки заземления

Система заземления представляет собой соединение электрического оборудования с грунтом для отвода тока. Заземлительные устройства обеспечивают защиту обитателей здания и находящегося в нем имущества от разрушительного воздействия электричества. Чтобы удостовериться в необходимой функциональности системы, проводится периодическая проверка заземления.

Зачем замерять сопротивление

Измерения необходимы для определения величины сопротивления заземлительного контура. Также измеряют показатель сопротивления изоляционного слоя. Показатели должны находиться в рамках нормативов, разработанных контролирующими органами. В случае надобности сопротивление заземляющего устройства уменьшается увеличением поверхности контакта или улучшением общей проводимости среды. Для достижения нужного результата увеличивают число электродов или создают соленую среду в почве вокруг заземлителя.

Измерение величины сопротивления контура заземления

Типы заземления

Существует два типа заземления:

  1. Предотвращение последствий от ударов молнии. Заземление молниеприемниками для отвода тока по металлической конструкции в землю.
  2. Защитное заземление корпусов электробытовой техники или не токопроводящих участков электроустановок. Предотвращает поражение электричеством при случайном касании к элементам, не предназначенным для пропускания тока.

Электричество на электроустановках, где не должно появляться напряжение, возникает в таких ситуациях:

  • статическое электричество;
  • наведенное напряжение;
  • вынос потенциала;
  • электрический заряд.

Система заземления представляет собой контур, созданный из металлических прутьев, закопанных в грунт, вместе с подключенными к нему проводящими элементами. Точкой заземления называют место стыковки с заземляющим устройством проводника, идущего от защищаемой техники.

Устройство заземлительной системы частного дома

Заземлительная система подразумевает контакт устройства заземления с корпусами электробытовой техники. Причем заземление не работает до тех пор, пока по любой причине не возникнет потенциал. В исправной цепи не появляются никакие виды токов за исключением фоновых. Основной причиной появления напряжения является нарушение изоляционного слоя на оборудовании или повреждение проводящих элементов. При возникновении потенциала происходит его перенаправление в грунт посредством заземляющего контура.

Заземлительная система уменьшает напряжение на нетоковедущих металлических участках до приемлемого (безопасного для живых существ) уровня. В случае если целостность контура по каким-либо причинам нарушена, напряжение на нетоковедущих элементах не снижается, а потому представляет серьезную опасность для человека и домашних животных.

Факторы учета сопротивления

Для тестирования соответствия заземляющего устройства требованиям нормативов осуществляется замер сопротивления растеканию тока Rз. В идеале данный показатель должен быть равен нулю. Однако в реальности эта цифра недостижима.

Величина (Rз) включает в себя несколько компонентов:

  1. Сопротивление материала, установленного под землей электрода, а также сопротивление на контакте металла с проводником. Однако этот показатель не столь важен из-за отличной проводимости используемых материалов (сталь с напылением меди или же чистая медь). Показатель игнорируется только в случае качественного соединения с проводником.
  2. Сопротивление между почвой и электродом. Показатель игнорируют, если электрод плотно установлен, а контакт не покрашен или не покрыт диэлектриком. Однако с течением времени металл ржавеет, и его проводимость уменьшается. Поэтому следует использовать покрытые медью стержни или делать замеры сопротивления растеканию. Для уменьшения интенсивности коррозии сварочные швы лакируют.
  1. Сопротивление грунта. Считается самым важным фактором. Особое значение придается близлежащим слоям почвы. По мере удаления слоев сопротивление уменьшается. На определенном расстоянии сопротивление становится нулевым.
  2. Неоднородность электрических характеристик грунта с трудом поддается учету. Исходя из этого замеряют фактический Rз. Для одиночной простой заземлительной конструкции определяющее значение имеют поверхностные слои земли, а для контурной — глубинные.

Объект испытания

Проверочные действия осуществляются в отношении заземлительных устройств, выполненных как одиночные электроды или контуры. К объектам проверки не относятся PEN-проводники и PE-проводники, включенные отдельными жилами в кабели.

Заземлительные устройства создаются в одном из двух исполнений:

  1. Горизонтальное. В этом случае полосы располагаются по дну траншеи.
  2. Вертикальное. Заземлительный контур представляет собой забитые в землю и соединенные между собой полосы или трубы. Стержни располагают в грунте на глубине, превышающей длину самих металлических изделий. Чаще всего контур по своей форме создается в виде треугольника.

Замена элементов системы осуществляется при ржавлении более 50% поверхности. Проверка на коррозию на электроустановках проводится выборочно там, где наиболее заметны ее проявления. При проведении проверочных мероприятий тестируют заземление нейтралей. На высотных линиях проверяют по крайней мере 2% от имеющихся опор. Предпочтительные объекты проверок — участки заземления, находящиеся в максимально агрессивных средах.

В таблице внизу представления показатели Rз, присущие разным видам заземлителей.

Таблица показателей сопротивления току растекания

Проведение замеров

Метод амперметра-вольтметра

Чтобы провести замеры, создают электрическую цепочку, по которой ток протекает через проверяемое заземлительное устройство и токовый проводник (его также именуют вспомогательным электродом). В схеме присутствует еще и потенциальный электрод, задача которого состоит в измерении падения напряжения при протекании тока через заземлитель. Потенциальный проводник находится на участке с нулевым потенциалом — на равном удалении от вспомогательного электрода и проверяемой заземлительной системы.

Для измерений сопротивления применяют закон Ома (формула R=U/I). С помощью данной методики чаще всего определяют сопротивление в условиях частного дома. Для получения необходимого тока используют трансформатор для сварочных работ или любое другое оборудование, где отсутствует электрическая связь между вторичной и первичной обмоткой.

Использование специальной техники

В домашних условиях редко пользуются дорогостоящим многофункциональным мультиметром. Чаще всего применяются аналоговые приборы:

  • МС-08;
  • Ф4103-М-1;
  • М-416;
  • ИСЗ-2016.

Измеритель сопротивления МС-08

Один из самых распространенных приборов для проверки сопротивления — МС-08. Для измерений устанавливают два электрода на 25-метровом расстоянии от заземлительного устройства. Ток в цепочке образуется под действием генератора, вращаемого вручную с помощью редуктора. В результате задействования схемы и подключения прибора происходит компенсация сопротивления вспомогательных заземлителей. Если этого не случается, почва возле дополнительного заземлительного устройства искусственно увлажняется. Замеры осуществляют в различных диапазонах до тех пор, пока тестер не покажет значимых показателей (причем они не должны разниться после окончательной установки).

Измерительный прибор М-416 комфортен в использовании благодаря малому весу и шкале, где фиксируются полученные данные. М-416 включает в себя полупроводники с автономным электропитанием.

Пример использования прибора М-416:

  1. Проверяем наличие питания у прибора. В устройстве должны находиться три батарейки — каждая по 1,5 вольта.
  2. Устанавливаем прибор на ровную поверхность.
  3. Проводим калибровку оборудования. Настраиваем М-416 на контроль и, нажимая на красную кнопку, устанавливаем стрелку на нулевое положение.
  4. Выбираем трехзажимную схему для проведения замера.
  5. Вспомогательный проводник и стержень зонда вкапываем в землю по меньшей мере на 50 сантиметров.
  6. Соединяем провода с электродом и стержнем зонда согласно схеме.
  7. Переключатель ставим в одну из позиций «X1». Удерживая клавишу, прокручиваем ручку до тех пор, пока стрелка на шкале не достигнет нуля. Результат умножаем на ранее вычисленный множитель. Итоговое значение является искомым.

Работа токовыми клещами

Контурное сопротивление определяют также с помощью токовых клещей. Их основное достоинство том, что не нужно отключать заземлитель и использовать вспомогательные проводники.

Через проводник заземления, в роли которого выступает вторичная обмотка, проходит переменный ток. Протеканию тока способствует первичная трансформаторная обмотка, находящаяся в измерительной головке устройства. Чтобы определить показатель сопротивления, делим данные ЭДС вторичной обмотки на величину тока, полученную при измерении клещами.

В качестве примера токовых клещей приведем тестер СА 6415. Он оснащен жидкокристаллическим монитором. Для измерения сопротивления не нужны дополнительные проводники. Также отсутствует потребность в отключении PE-проводника от электродов.

Токоизмерительные клещи АТК-1010

Замер сопротивления изоляции

Чтобы измерить сопротивление изоляции, используют специальный прибор — мегомметр. Устройство состоит из нескольких элементов:

  • генератор непрерывного тока, оснащенный ручным приводом;
  • добавочные сопротивления;
  • магнитоэлектрический логометр.
Читайте также  Распространенные мифы и заблуждения о литиевых тяговых батареях для погрузчиков

До начала проверочных работ следует удостовериться, что объект отключен от электропитания. Удаляем с изоляционного слоя пыль и грязь. После этого проводим замер в течение приблизительно 3 минут. В результате получаем данные по остаточным зарядам.

К электроцепи или оборудованию мегомметр подключаем отдельными проводниками. Изоляция отличается высоким сопротивлением. Его уровень чаще всего превышает 100 мегаом.

Измерение сопротивления изоляции кабеля

Обратите внимание! Замер сопротивления изоляции проводится после того, как стрелка займет устойчивую позицию.

Периодичность измерений

Определение периодичности замеров сопротивления заземлительного устройства осуществляется в соответствии с требованиями ПТЭЭП (Правила технической эксплуатации электроустановок потребителей). Согласно регламенту, проверки производят каждые 6 лет. Также осуществляются регулярные проверки исправности контура. Визуальный осмотр наружных частей и частичное откапывание внутренних элементов контура делают по установленному на объекте графику, но не реже одного раза в год.

Указанные сроки относятся к предприятиям. Регулярность проверок в частных домах оставляется на усмотрение владельцев. Специалисты не рекомендуют пренебрегать проверочными мероприятиями, поскольку от этого зависит безопасность проживания в доме.

В теплую и сухую погоду результаты испытаний более достоверны. А вот во влажной среде они будут не столь точными, поскольку растекаемость тока приводит к повышению проводимости.

Нормативные результаты испытаний указаны в таблице ниже.

Данные результатов испытания заземлительного устройства

Оформление результатов проверки

Если решено поручить проверку специалистам, следует обратиться в специализированную электротехническую лабораторию. Проверку выполнят квалифицированные сотрудники. По результатам работы будет выдан протокол измерения сопротивления.

Протокол представляет собой бланк, в котором указаны такие данные:

  • место проведения испытаний;
  • название проверяемого объекта;
  • назначение заземлительного устройства;
  • схема установки заземлителей и их соединений;
  • расстояние между электродами.

Кроме того, в протоколе указывается сезонный поправочный коэффициент и методика, в соответствии с которой осуществлялось измерение. Для составления протокола необходим паспорт объекта и акт на скрытые работы.

Обратите внимание! Рекомендуется включать в протокол данные о приборе, с помощью которого измерялось сопротивление. Информация должна включать тип устройства, его заводской номер и другие важные показатели. Результаты измерений вносят в паспорт заземлителя.

Отдельно составляется протокол испытания переходных сопротивлений. Данное понятие (переходное сопротивление также называют металлосвязью) представляет собой потенциальные потери на пути протекания тока. Они происходят в связи с наличием на контуре каких-либо соединений, в том числе сварочных, болтовых и прочих. Испытательные работы проводят с помощью специального тестера — микроомметра.

Правом проведения официальных испытаний и выдачи протокола обладает только сертифицированная органом стандартизации испытательная лаборатория. После выдачи акта система считается пригодной к эксплуатации.

“Методичка” по измерению сопротивления заземляющего устройства

Измерение сопротивления заземления дает базовую информацию о его работоспособности. А так как основным средством защиты электроустановок, как правило, является именно заземляющее устройство (ЗУ), без оценки его основной характеристики не обойтись как при сдаче в эксплуатацию, так и при периодических и контрольных испытаниях в процессе эксплуатации.

Методичка по измерению сопротивления заземляющего устройства

Основные понятия позволяют говорить на одном языке. Вы понимаете и Вас понимают.

Согласно ПУЭ-7, сопротивлением заземляющего устройства называется отношение напряжения на ЗУ к току, стекающему с заземлителя в землю. При этом обратим внимание, что заземляющим устройством называется совокупность заземлителя и заземляющих проводников. То есть при измерении необходимо определить сопротивление всей цепи, составляющей заземлитель (распространен термин «контур заземления», обозначающий эту цепь, хотя в ПУЭ-7 он официально не закреплен).

Применительно к ЗУ различают испытания, связанные с вводом в эксплуатацию и эксплуатационные испытания. В первом случае измерение сопротивления производятся, чтобы определить, можно ли вводить ЗУ в эксплуатацию (наряду с другими видами испытаний, если они предусмотрены нормативными документами). Во втором случае оценивается работоспособность уже введенного в строй заземления в данный момент времени. Необходимость в эксплуатационных испытаниях возникает как по причине старения ЗУ, так и по причине сезонного изменения параметров заземления, связанного, например, с колебанием влажности грунтов.

Несмотря на то, что измеряется сопротивление, применение обычных омметров для проверки ЗУ практически бесполезно. Для этого вида измерений выпускаются специальные приборы. Они именуются измерителями сопротивления заземления или просто измерителями заземления.

Измерения могут проводиться на постоянном токе, переменном токе промышленной частоты (для нашей страны это частота 50 Гц), а также переменном токе высокой частоты (частота порядка сотен Гц и выше). Поскольку основой электроэнергетики все еще является переменный ток, измерения параметров заземления на постоянном токе, за исключением каких-то совсем узкоспециализированных случаев, не проводятся. При измерениях на частоте 50 Гц возникает проблема помех от блуждающих токов на той же частоте, вызванных работой электроустановок или даже ЛЭП поблизости. Эта проблема решалась возможностью вручную варьировать рабочую частоту (например, такое решение было применено в советском приборе МС-08). Измерения с использованием токов высокой частоты весьма актуальны в связи с широким распространением разного рода нелинейных нагрузок, что приводит к обилию гармоник в цепи заземления.

В современных приборах используется измерение сопротивления с использованием импульсов тока с формой «меандр», частота которых лежит в пределах от 100 до 300 Гц (например, в пользующемся большой популярностью приборе ЖГ-4300 используется частота 128 Гц). Тем самым удается отстроиться от помех с частотой 50 Гц и имитировать реальные условия, когда ток имеет множество гармоник. Дополнительная защита от действия помех достигается за счет цифровой обработки сигналов, в частности, применения быстрого преобразования Фурье.

Амплитуда напряжения на клеммах измерителей сопротивления ЗУ, как правило, не должна превышать 42 В. Благодаря этому обеспечивается безопасность процедуры измерения для персонала.

Чем измерять

Настоящей «рабочей лошадкой» для измерения сопротивления ЗУ долгие годы являлся прибор МС-08. Его выпуск был начат еще в 1957 г., при этом прибор используется кое-где до сих пор. Мало того, в интернет-магазинах можно найти новые экземпляры, продаются они по цене даже выше современных цифровых измерителей китайского производства. Кстати, упоминания о снятии с производства МС-08 найти нигде не удалось, возможно, эта легенда выпускается до сих пор?

Важным преимуществом МС-08 является то, что ему не нужны элементы питания. При измерении необходимо крутить ручку динамо-машины, вырабатывающей переменный ток. Меняя частоту вращения ручки, можно варьировать частоту, на которой производятся измерения, чтобы отстроиться от помех. С ручкой механически связана не только динамо-машина, но еще и коммутатор, выполняющий функцию выпрямителя. Коммутатор меняет полярность подключения измерительного прибора синфазно с генерируемым динамо-машиной током. Благодаря этому достаточно эффективно подавляются помехи. У прибора предусмотрено три диапазона измерений: до 10 Ом, до 100 Ом и до 1000 Ом.

В 1972 г. в СССР был налажен выпуск более совершенных измерительных приборов М416, где уже ручку крутить не нужно было. Подавление помех осуществлялось благодаря применению метода синхронного детектирования. Возможно было измерения сопротивления в пределах от 0,1 до 1000 Ом, было предусмотрено 4 диапазона измерений. В настоящее время «классический» аналоговый М416 не выпускается, тем не менее, под данным индексом на рынок сейчас поставляется цифровой измеритель сопротивления ЗУ, который, впрочем, ничего общего с «тезкой» не имеет.

Из аналоговых измерителей сопротивления ЗУ советского образца до сих пор выпускается и широко используется прибор Ф4103-М1. Он может питаться как от гальванических элементов, так и от внешнего источника. Измерения осуществляются на частоте около 300 Гц (не регулируется). Прибор способен измерять сопротивления от 0 до 15000 Ом, предусмотрено 10 диапазонов.

Современные приборы, как правило, имеют цифровую индикацию, но до сих пор есть специалисты, для которых стрелочные индикаторы являются более комфортными. Они по достоинству оценят недорогой прибор SEW 1805R со стрелочным индикатором. К преимуществам устройства, измеряющего сопротивления от 0,1 до 2000 Ом (3 диапазона), можно отнести малую силу тока, используемую при измерениях (2 мА против 80 — 200 мА у других приборов), что в ряде случаев позволяет не отключать измеряемые цепи. Другая особенность — высокая рабочая частота, составляющая 820 Гц. Недостаток прибора — он поддерживает только 2-проводную и 3-проводную схемы измерений (об этом более подробно пойдет речь далее).

Для проведения измерений в сложных условиях оптимально подойдет прибор ИС-20. В числе его преимуществ — эргономичный дизайн, степень защиты IP54, многовариантность способов питания. Диапазон измеряемых сопротивлений — от 1 микроОма до 9,99 кОм. Данные измерений могут быть переданы на компьютер беспроводным способом через Bluetooth. Рабочая частота — 128 Гц, в режиме двухпроводных измерений — 512 Гц. Важно, что прибор производится в России, что критично для ряда применений.

Читайте также  Видимое заземление оборудования пункт пуэ

Современной «рабочей лошадкой» измерений сопротивления ЗУ является прибор Железный Гарри ЖГ-4300. Он очень легкий (0,9 кг с элементами питания), имеет удобный эргономичный дизайн. Можно измерять сопротивления от 0,05 Ом до 20 кОм, предусмотрено 5 диапазонов.

К топовым моделям измерителей можно отнести прибор MRU-200. Он способен измерять сопротивление защитного заземления в пределах от 0 до 19,99 кОм. Степень защиты IP54, предусмотрен встроенный NiMH аккумулятор емкостью 4,2 Ач — все это является значительными преимуществами при работе «в поле». Помимо измерения сопротивления защитного заземления, прибор также умеет определять сопротивление заземления системы молниезащиты импульсным методом, от 0 до 199 Ом. Этот измеритель сопротивления ЗУ производится на территории Евросоюза, а именно, в Польше.

Следует отметить, что перечисленные приборы, помимо основной функции, могут иметь и дополнительные, например, измерение удельного сопротивления грунта или измерение сопротивления тока утечки.

Как измерять

Наиболее распространенными являются классические методы измерения сопротивления ЗУ, основанные на применении вольтметра и амперметра с последующим вычислением сопротивления по закону Ома. Более подробно об этих методах можно прочесть здесь.

К преимуществам классических методов можно отнести возможность их использования практически для любых систем электроснабжения. Недостатки — необходимость отключения заземления от электроустановки на время измерений, влияние блуждающих токов на точность измерений.

Классические методы делятся на двух- , трех- и четырехпроводные. Из-за низкой точности двухпроводный метод практически не используется. Трехпроводный метод отличается простотой реализации, но по точности он уступает четырехпроводному.

измерительный прибор

В том случае, если измеряемое сопротивление ЗУ должно быть заведомо ниже 5 Ом, рекомендуется использовать только четырехпроводный метод.

измерительный прибор

На измерительном приборе есть потенциальные клеммы П1 и П2 и токовые клеммы Т1 и Т2. При четырехпроводном методе от П1 и Т1 к заземлению идут разные провода, которые соединяются уже непосредственно на клеммах заземления. При измерении трехпроводным методом клеммы П1 и Т1 соединяются перемычкой и от них к заземлению идет один провод. Если же прибор изначально предназначен только для измерений трехпроводным методом, то для подключения к заземлению одним проводом предусмотрена, соответственно, одна клемма.

Клеммы П2 и Т2 соединяются, соответственно, с так называемыми потенциальным штырем и токовым штырем. Измерительные штыри рекомендуется заглублять в грунт не менее, чем на 0,5 м. Обычно токовый и потенциальный штыри выстраивают в единую линию с ЗУ.

Для того, чтобы правильно определить расстояние между штырями, нужно определить максимальный размер диагонали заземлителя D. Потенциальный штырь устанавливается на расстоянии 1,5 D, но не менее 20 м от заземлителя. Токовый штырь устанавливается на расстоянии не более 3D, но не менее 40 м от заземлителя.

Но одного измерения для получения точного результата обычно недостаточно. Причина — неравномерность структуры почвы. Поэтому потенциальный штырь несколько раз устанавливают на расстоянии от 20 до 80% от исходного расстояния между потенциальным и токовым штырем. При этом каждый раз измеряется сопротивление. Чем больше точек, тем лучше, для высокой точности достаточно шага в 10%. Полученные результаты наносятся на график. Если график имеет форму плавно возрастающей кривой, то за окончательный результат берется сопротивление на участке, где разница между соседними точками не превышает 5%. Если график демонстрирует значительную крутизну либо более сложную форму, то измерения нужно повторить, изменив направление линии, на которой выставлены штыри. Возможно, придется также увеличить исходные расстояния в 1,5 — 2 раза.

Безэлектродный метод

Установить токовый и потенциальный штыри не всегда есть возможность. Например, в условиях вечной мерзлоты или когда для штырей на объекте просто нет места. В то же время, измерение заземления ЛЭП в районах вечной мерзлоты осуществляется, как правило, именно в период наибольшего промерзания грунта. Также не всегда есть возможность отключить ЗУ от электроустановки на время измерений. Тогда в ход идет безэлектродный метод измерения согласно ГОСТ Р 50571.16-2007, основанный на применении токовых клещей. Подробно он описан здесь.

Безэлектродный метод

На ЗУ подается от измерительного генератора переменный ток заданного напряжения с частотой, отличной от частоты сети. Сила тока в проводе заземления измеряется специальными токовыми клещами, которые чувствительны только к частоте, на которой работает измерительный генератор. Поскольку значение напряжения на ЗУ точно известно, измерив силу тока, можно вычислить, согласно закону Ома, сопротивление ЗУ.

Следует отметить, что, при всем удобстве, безэлектродный метод по точности измерений уступает правильно организованным измерениям по классическому методу. В частности, для подачи переменного тока для измерения в цепь используется прибор, аналогичный по принципу действия токовым клещам. Чтобы обеспечить нужный уровень индукции, применяется рабочая частота около 3 кГц, что также дает погрешность.

Можно считать, что безэлектродный метод дает оценку значению сопротивления ЗУ сверху. То есть реальное значение сопротивления не превысит показания прибора. С точки зрения безопасности это нормально — чем меньше реальное значение сопротивления, тем лучше.

Недостатком безэлектродного метода является то, что он может напрямую применяться только в системах ТТ и системах TN с ячеистым заземлением. Для обычных систем TN потребуется кратковременная установка перемычки между нейтралью и заземлением. Питание во всем здании, где установлено заземление, придется на время измерений отключить и преимуществ относительно классического метода уже не будет.

В качестве примеров оборудования для измерения безэлектродным способом, можно привести FLUKE-1630-2 и Greenlee CMGRT-100A. Стоимость таких систем в 5 — 10 раз выше, чем у приборов для измерения сопротивления классическим способом.

Требования к приборам, документации и персоналу лаборатории

Поскольку от исправности заземления зависит состояние здоровья, а то и жизни людей, рассматриваемые в статье приборы должны быть сертифицированы для использования на территории РФ и пройти поверку. Срок поверки измерителя сопротивления ЗУ обычно составляет 1 год, в отдельных случаях — до 2 лет. Общие требования к квалификации сотрудников, работающих с измерителем сопротивления ЗУ, как правило, приведены в технической документации к прибору.

Если измерения осуществляются в рамках текущего обслуживания электроустановки, документация по ним оформляется согласно гл. 1.8 ПТЭЭП.

Для того, чтобы лаборатория, где используется прибор, могла работать в рамках Единой системы соответствия, ее организационная структура и квалификация сотрудников должны соответствовать требованиям СДАЭ-04-2010. Лаборатория должна пройти аттестацию по правилам, приведенным в СДАЭ-01-2010 и ПОТЭЭ иметь Свидетельство о регистрации электролаборатории.

В том случае, если измерения осуществляются аккредитованной лабораторией, оформление протокола измерений осуществляется согласно ГОСТ Р 58973-2020. Этот ГОСТ дает общие правила оформления документации. Конкретный образец бланка протокола измерения сопротивления ЗУ получил название ЭЛ-8а (скачать бланк). Данный бланк соответствует требованиям ГОСТ Р 58973-2020, тем не менее, он не был введен каким-либо федеральным нормативным актом. Просто в свое время был создан типовой комплект бланков протоколов испытаний в формате *.doc. Это удобно, тем не менее, законодательно требование использовать именно такую форму нигде не закреплено.

К протоколу измерений желательно приложить копию свидетельства об аттестации лаборатории, а также копию свидетельства о поверке измерительного прибора. Эти документы сразу дадут понимание компетентности и профессионализма работников и компании производивших измерения.

Сколько должно быть Ом и как часто нужно измерять?

Некоторые нормы на сопротивление заземления приведены в таблице:

Вид заземления Сопротивление, Ом, не более Нормативный документ Возможность увеличения в исключительных случаях
Электроустановки до 1 кВ с изолированной нейтралью 4 п. 1.7.65 ПУЭ-7 10 Ом при мощности генераторов и трансформаторов не более 100 кВА
Общее сопротивление растеканию заземлителей трехфазной ВЛ 380 В 10 п. 1.7.64 ПУЭ-7 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного
Повторное сопротивление растеканию заземлителей трехфазной ВЛ 380 В 30 п. 1.7.64 ПУЭ-7 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного
Заземление нейтрали генератора или трансформатора в трехфазной сети 380 В 4 п. 1.7.101 ПУЭ-7 0,01ρ раз при удельном сопротивлении земли ρ свыше 100 Ом*м, но не более 10-кратного

ПТЭЭП рекомендует осуществлять полную проверку ЗУ со вскрытием грунта 1 раз в 12 лет. Устройства заземления опор воздушных линий менее 1000 В следует проверять чаще — 1 раз в 6 лет. Кроме этого, устройства заземления следует проверять после ремонта опор.

Нормы РД 153-34.0-20.525-00 требуют полной проверки ЗУ на объектах электроэнергетики с периодичностью 1 раз в 12 лет. Тем не менее, после возникновения короткого замыкания или аварийных ситуаций на объекте, должно быть произведено обследование ЗУ в зоне аварии и на прилегающих к ней участках ЗУ. Кроме этого, что особенно актуально в свете проводимых мероприятий по цифровизации электроэнергетики, рекомендовано проверять ЗУ после каждой реконструкции, особенно если устанавливаются электронные и микропроцессорные устройства. Вот почему по мере внедрения современных технологий в электроэнергетике приборы для измерения сопротивления ЗУ будут все более востребованы.

Получить бесплатный расчет заземления или задать вопрос эксперту ZANDZ можно используя кнопки ниже.

Источник https://profazu.ru/provodka/bezopasnost-provodka/kak-proverit-zazemlenie.html

Источник https://220.guru/electroprovodka/zazemlenie-molniezashhita/izmerenie-soprotivleniya-zazemleniya.html

Источник https://zandz.com/ru/biblioteka/metodichka-po-izmereniyu-soprotivleniya-zazemlyayushego-ustrojstva/

Понравилась статья? Поделиться с друзьями: