Система уравнивания потенциалов

 

Содержание

Система уравнивания потенциалов

Современные многоквартирные дома оборудованы различными инженерными системами и многочисленными бытовыми приборами, металлические элементы которых служат проводниками электрического тока и обладают своим потенциалом. При нормальной эксплуатации потенциал близок к нулю и не отличается от потенциала поверхности и других окружающих предметов. При аварии, например повреждении изоляции или заносе потенциала по трубам, потенциал проводящих частей может повышаться до нескольких сотен вольт. При одновременном прикосновении человека к двум предметам с разными потенциалами, возникает опасность поражения его электрическим током. Причиной возникновения напряжения на металлических токопроводящих частях может быть не только поврежденная изоляция, но и статическое электричество, а так же блуждающие токи систем заземления. В случае протекания через заземляющее устройство электрического тока, оно так же оказывается под напряжением и не гарантирует достаточный уровень безопасности.
Надёжную защиту обеспечивает система уравнивания потенциалов (СУП), организованная по принципу электрического соединения всех доступных для прикосновения токопроводящих частей здания с нулевым защитным проводником РЕ. В данном случае, потенциально опасные металлические элементы будут иметь одинаковый потенциал, что снижает вероятность удара током, при одновременном прикосновении к ним.

Нормирование системы уравнивания потенциалов

Согласно п. 1.7.32 ПУЭ, под защитным уравниванием потенциалов понимают электрическое соединение проводящих частей для достижения равенства их потенциалов, выполняемое в целях электробезопасности.
Систему уравнивания потенциалов (СУП) используют для устранения разности напряжений всех проводящих элементов и конструкций здания, а так же относящихся к нему инженерных сетей и коммуникаций между собой и заземляющим устройством, путем их объединения в единый контур с использованием защитных проводников.
Защитные проводники могут находиться в составе линий электроснабжения здания или прокладываться отдельно. Подключение каждого токопроводящего элемента необходимо выполнять отдельным проводом, с помощью болтовых соединений, зажимов или сварки, с обязательным соблюдением условий доступности для осмотра и проведения испытаний, а так же защиты от механических повреждений и коррозии. Соединения не должны выполняться пайкой.
В составе СУП отдельного здания различают основную и дополнительную системы уравнивания потенциалов. Правила по их выполнению определены в следующих нормативных документах:

  1. Стандарт МЭК 364-4-41; ГОСТ 13109-97 Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения;
  2. ГОСТ Р. 50571.1-93 Электроустановки зданий. Основные положения;
  3. ГОСТ Р. 50571.2-94 Электроустановки зданий. Основные характеристики;
  4. Правила устройства электроустановок (ПУЭ 7-го издания).

Основная система уравнивания потенциалов

Основная система уравнивания потенциалов (ОСУП) объединяет все крупные токопроводящие части здания, в обычном состоянии не имеющие электрического потенциала, в единый контур с главной заземляющей шиной. Рассмотрим графический пример выполнения СУП в электроустановке жилого дома.

Система уравнивания потенциалов в жилом доме

Система уравнивания потенциалов в жилом доме

Система уравнивания потенциалов в жилом доме

Согласно приведенной схеме ОСУП состоит из следующих элементов:

  • контура заземления (заземляющего устройства);
  • лавной заземляющей шины (ГЗШ);
  • нулевых защитных проводников;
  • проводников уравнивания потенциалов.

Перечень проводящих частей в электроустановках до 1 кВ, подлежащих соединению в ОСУП, определен в п. 1.7.82 ПУЭ. Главную заземляющую шину можно установить внутри вводно-распределительного устройства или обособленно, при соблюдении следующих условий: расположение неподалеку от защищаемого объекта, обеспечение доступа для ее обслуживания и обязательной защиты от возможного прикосновения.
Внутри вводно-распределительного устройства в качестве ГЗШ используют шину нулевого защитного проводника РЕ, что обеспечивает не только подключение защитного нуля питающей входящей линии с нулевыми проводниками распределительной сети здания, но и выполняет функцию присоединения отдельных проводящих частей и заземляющих устройств. Отдельно расположенная шина соединяет только входящие в ОСУП токопроводящие конструкции и заземлители. Площадь сечения такой ГЗШ должна быть не менее площади сечения нулевого защитного проводника питающей входящей линии.
Главную заземляющую шину изготавливают из меди, возможно применение стали.
К ней подключают контур заземления и нулевые защитные проводники (PEN или PE в зависимости от выбранной системы заземления). Металлические части и конструкции здания, а так же относящиеся к нему коммуникации и систему вентиляции монтируют к ГЗШ по радиальной схеме, выполняя соединения каждого токопроводящего элемента отдельным проводником уравнивания потенциалов, с возможностью отключения любого из них.
Токопроводящие части коммуникаций, входящие в здание извне, необходимо присоединять к ГЗШ как можно ближе к точке их ввода. К соединительным проводникам ОСУП предъявляют повышенные требования, главным из которых является их непрерывность. Поэтому установка в цепях различных коммутационные аппаратов строго запрещена. Проводники имеют жёлто-зеленую окраску с обязательным наличием бирки с наименованием присоединяемого элемента. Закрепляют их на шине болтовыми соединениями, к проводящим конструкциям крепят так же при помощи сварки, для труб коммуникаций используют хомуты.
Сечение проводников уравнивания потенциалов должно быть не менее: 6 мм 2 — для медных, 16 мм 2 – для алюминиевых и 50 мм 2 – для стальных. см. п. 1.7.137 ПУЭ.

Дополнительная система уравнивания потенциалов

В зонах повышенной опасности поражения людей электрическим током, таких как, ванная, сауна, кухня или душевая, следует выполнять дополнительную систему уравнивания потенциалов (ДСУП), для обеспечения достаточного уровня электробезопасности в случае возникновения аварийной ситуации. Система дополнительного уравнивания потенциалов соединяет между собой все одновременно доступные для прикосновения открытые и сторонние проводящие части, нулевые и заземляющие защитные проводники всего оборудования (в зависимости от типа системы), включая защитные проводники штепсельных розеток. см. п. 1.7.83 ПУЭ. Схема соединений ДСУП изображена на рисунке ниже.

Система уравнивания потенциалов в ванной комнате

Система уравнивания потенциалов в ванной комнате

Как видно из схемы, все потенциально опасные проводящие конструкции подсоединяют к клеммной коробке (шине) в коробке уравнивания потенциалов, что позволяет организовать ДСУП, не протягивая защитные проводники от каждого элемента к распределительному щитку квартиры (дома).
Изготавливают шину ДСУП из меди сечением не менее 10 мм 2 , подключая к ней шесть разъемов и более.
КУП соединяют с шиной заземления вводного распределительного щитка с использованием медного защитного PE-проводника сечением 6 мм 2 , заземляя таким образом все металлические части помещения. Обязательному подключению к ДСУП подлежат и выходящие за пределы помещений сторонние проводящие элементы.
В домах нового жилого фонда проводники СУП прокладываются на этапе строительства, совместно с монтажом электропроводки. В случае их отсутствия, по каким либо причинам, проводники возможно уложить самостоятельно, прорезав для этого в стяжке пола узкие канавки. Перед началом работ необходимо убедится, что в полу нет других коммуникаций. Проводники соединяют с заземляемыми объектами болтовыми соединениями, хомутами или привариванием контактных лепестков, что обеспечивает наличие прочной металлической связи между ними.
ДСУП выполняют с использованием специально предусмотренных проводников или применяют открытые и сторонние токопроводящие элементы, соответствующие требованиям п. 1.7.122 ПУЭ к защитным проводникам. см п. 1.7.83 ПУЭ. При условии отсутствия механического воздействия, требуемое сечение для проводников составляет 2,5 мм 2 и более. При возможном механическом воздействии используют проводники сечением 4 мм 2 и более. Соединение двух открытых проводящих элементов выполняют проводником сечением не менее сечения меньшего из подключенных к ним защитных проводников. Сечение проводников ДСУП, соединяющих открытую и стороннюю проводящие части, должно быть не меньше половины сечения защитного проводника, подключенного к открытой проводящей части. см. п. 1.7.138 ПУЭ.

Читайте также  Заземление цеха, расчёт контура заземления цехов, правила монтажа в цехах.

Ограничения при уравнивании потенциалов

Монтаж СУП выполняют еще на этапе строительства здания. Однако существует ограничение по ее применению в уже имеющихся постройках. В домах с системой заземления TN-C, с объединенным PEN-проводником, выполнять дополнительное уравнивание потенциалов категорически запрещено. В противном случае, при обрыве нулевого провода, возникает опасность поражения электрическим током остальных жильцов, не сделавших ДСУП. Как правило, это ограничение касается многоэтажных зданий старого жилого фонда.
Проблема решается при возможности перехода на систему заземления TN-C-S: для чего на ГЗШ в вводно-распределительном устройстве здания PEN-проводник разделяют на PE и N проводники, выполняют контур заземления и соединяют его с главной заземляющей шиной медным проводом. Существующая в настоящее время тенденция проводить коммуникации (водопровод и канализацию) пластиковыми трубами, не требует объединение их в систему уравнивания потенциалов. Замена в уже имеющейся ДСУП металлических труб на токонепроводящие пластиковые, приводит к нарушению электрической связи с заземляющей шиной всех остальных металлических элементов помещения (батарей, полотенцесушителей и пр.), делая их потенциально опасными для человека в случае одновременного прикосновения.

Заключение

Современные нормы и правила строительства уделяют особое внимание правильности монтажа системы уравнивания потенциалов. Её первым делом осматривают и проверяют на соответствие проектной документации при сдаче дома в эксплуатацию. Электробезопасность обеспечивают путём организации электрического соединения всех доступных для прикосновения проводящих частей здания с ГЗШ при помощи РЕ-проводников. ОСУП дополняется системой уравнивания потенциалов в зонах с повышенной опасностью поражения электрическим током.
Важно помнить, что выполнение ДСУП возможно только в домах с системами заземления с раздельной прокладкой PE и N проводников. К ним относится современная система заземления TN-S, а так же модернизированная система до схемы TN-C-S.
При монтаже СУП обязательно обеспечение прочной металлической связи между её элементами, подключенными по радиальной схеме с соблюдением требуемого сечения защитных проводников.

Система уравнивания потенциалов

Система уравнивания потенциалов

Электричество уже давно прочно вошло в наш быт, и вряд ли кто-то сможет себе представить реальную жизнь без многочисленных электроприборов, значительно облегчающих нашу жизнь. Электроплита, холодильник, электрочайник, микроволновка, стиральная машина и многие другие бытовые помощники, без которых мы уже практически не можем обойтись. Да и мало кто представит себе обычный магазин около дома, любимое кафе, кондитерскую без многочисленных холодильников, миксеров, кофеварок, мармитов, печей, мясорубок и прочего многообразного электрооборудования.

Многие из электроприборов имеют металлические части. Естественно, что все металлические проводящие части оборудования имеют определённый электрический потенциал, и если этот потенциал одинаков на всех доступных прикосновению поверхностях, то никаких проблем не предвидится.

А что будет, если где-то повредилась изоляция, и токопроводящая жила случайно коснулась корпуса или ручки электроприбора? Или на корпус прибора перешёл заряд статического электричества? В чём состоит опасность для здоровья человека?

В случае, когда человек случайно прикоснется одновременно к двум металлическим частям, обладающих разными электрическими потенциалами, может получить поражение электрическим током. Поэтому для обеспечения условий безопасности при эксплуатации электроустановки необходимо выполнить систему уравнивания потенциалов (СУП).

Немного теории об устройстве системы уравнивания потенциалов

Правила выполнения системы уравнивания потенциалов определены стандартом ГОСТ Р 50571.3 (МЭК 364-4-41) и ПУЭ (7 изд.) п.п. 1.7.82, 1.7.83, 7.1.87, 7.1.88.

Так, ПУЭ предписывает выполнение основной системы уравнивания потенциалов (ОСУП) на вводе в здание и рекомендует по ходу передачи электроэнергии повторно выполнять дополнительные системы уравнивания потенциалов (ДСУП), при этом для ванных и душевых помещений дополнительная система уравнивания потенциалов является обязательной.

  • основной (магистральный) защитный проводник;
  • основной (магистральный) заземляющий проводник или основной заземляющий зажим;
  • стальные трубы коммуникаций зданий и между зданиями;
  • металлические части строительных конструкций, молниезащиты, системы центрального отопления, вентиляции и кондиционирования.

Заземление. Что это такое и как его сделать (часть 1)

e792536d3332b1ec9382323a94de72ed

В первой части (теория) я опишу терминологию, основные виды заземления (назначение) и предъявляемые к заземлению требования.
Во второй части (практика) будет рассказ про традиционные решения, применяемые при строительстве заземляющих устройств, с перечислением достоинств и недостатков этих решений.
Третья часть (практика) в некотором смысле продолжит вторую. В ней будет содержаться описание новых технологий, используемых при строительстве заземляющих устройств. Как и во второй части, с перечислением достоинств и недостатков этих технологий.

Если читатель обладает теоретическими знаниями и интересуется только практической реализацией — ему лучше пропустить первую часть и начать чтение со второй части.

Если читатель обладает необходимыми знаниями и хочет познакомиться только с новинками — лучше пропустить первые две части и сразу перейти к чтению третьей.

Мой взгляд на описанные методы и решения в какой-то степени однобокий. Прошу читателя понимать, что я не выдвигаю свой материал за всеобъемлющий объективный труд и выражаю в нём свою точку зрения, свой опыт.

Некоторая часть текста является компромиссом между точностью и желанием объяснить “человеческим языком”, поэтому допущены упрощения, могущие “резать слух” технически подкованного читателя.

1 часть. Заземление

В этой части я расскажу о терминологии, об основных видах заземления и о качественных характеристиках заземляющих устройств.

А. Термины и определения
Б. Назначение (виды) заземления

Б1. Рабочее (функциональное) заземление
Б2. Защитное заземление
Б2.1. Заземление в составе внешней молниезащиты
Б2.2. Заземление в составе системы защиты от перенапряжения (УЗИП)
Б2.3. Заземление в составе электросети

В. Качество заземления. Сопротивление заземления.

В1. Факторы, влияющие на качество заземления
В1.1. Площадь контакта заземлителя с грунтом
В1.2. Электрическое сопротивление грунта (удельное)
В2. Существующие нормы сопротивления заземления
В3. Расчёт сопротивления заземления

А. Термины и определения

Чтобы избежать путаницы и непонимания в дальнейшем рассказе — начну с этого пункта.
Я приведу установленные определения из действующего документа “Правила Устройства Электроустановок (ПУЭ)” в последней редакции (глава 1.7 в редакции седьмого издания).

Заземление — преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством (ПУЭ 1.7.28).

Грунт является средой, имеющей свойство “впитывать” в себя электрический ток. Также он являться некоторой “общей” точкой в электросхеме, относительно которой воспринимается сигнал.

Заземляющее устройство — совокупность заземлителя/ заземлителей и заземляющих проводников (ПУЭ 1.7.19).

Это устройство/ схема, состоящее из заземлителя и заземляющего проводника, соединяющего этот заземлитель с заземляемой частью сети, электроустановки или оборудования. Может быть распределенным, т.е. состоять из нескольких взаимно удаленных заземлителей.

На рисунке оно показано толстыми красными линиями:

7fa9afa282be2fd8c124b8812bb731ce

Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с грунтом (ПУЭ 1.7.15).

Проводящая часть — это металлический (токопроводящий) элемент/ электрод любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро :-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.
Конфигурация заземлителя (количество, длина, расположение электродов) зависит от требований, предъявляемых к нему, и способности грунта “впитывать” в себя электрический ток идущий/ “стекающий” от электроустановки через эти электроды.

На рисунке он показан толстыми красными линиями:

913e4e67d0a8ef1471f179ad9be5661f

Сопротивление заземления — отношение напряжения на заземляющем устройстве к току, стекающему с заземлителя в землю (ПУЭ 1.7.26).

Сопротивление заземления — основной показатель заземляющего устройства, определяющий его способность выполнять свои функции и определяющий его качество в целом.
Сопротивление заземления зависит от площади электрического контакта заземлителя (заземляющих электродов) с грунтом (“стекание” тока) и удельного электрического сопротивления грунта, в котором смонтирован этот заземлитель (“впитывание” тока).

Заземляющий электрод (электрод заземлителя) — проводящая часть, находящаяся в электрическом контакте с локальной землей (ГОСТ Р 50571.21-2000 п. 3.21)

Повторюсь: в качестве проводящей части может выступать металлический (токопроводящий) элемент любого профиля и конструкции (штырь, труба, полоса, пластина, сетка, ведро :-) и т.п.), находящийся в грунте и через который в него “стекает” электрический ток от электроустановки.

На рисунке они показаны толстыми красными линиями:

f944d3da1078bba1233c49d9d69a0357

Далее определения, не встречающиеся или не описанные достаточно точно в стандартах и нормах, поэтому имеющие только мое описание.

Контур заземления — “народное” название заземлителя или заземляющего устройства, состоящего из нескольких заземляющих электродов (группы электродов), соединенных друг с другом и смонтированных вокруг объекта по его периметру/ контуру.

На рисунке объект обозначен серым квадратом в центре,
а контур заземления — толстыми красными линиями:

f6393ee53d99394a36f80ea8ec65d851

Удельное электрическое сопротивление грунта — параметр, определяющий собой уровень «электропроводности» грунта как проводника, то есть как хорошо будет растекаться в такой среде электрический ток от заземляющего электрода.
Это измеряемая величина, зависящая от состава грунта, размеров и плотности
прилегания друг к другу его частиц, влажности и температуры, концентрации в нем растворимых химических веществ (солей, кислотных и щелочных остатков).

Б. Назначение (виды) заземления

Заземление делится на два основных вида по выполняемой роли — на рабочее (функциональное) и защитное. Также в различных источниках приводятся дополнительные виды, такие как: “инструментальное”, “измерительное”, “контрольное”, “радио”.

Б1. Рабочее (функциональное) заземление

Это заземление точки или точек токоведущих частей электроустановки, выполняемое для обеспечения работы электроустановки (не в целях электробезопасности) (ПУЭ 1.7.30).

Рабочее заземление (электрический контакт с грунтом) используется для нормального функционирования электроустановки или оборудования, т.е. для их работы в ОБЫЧНОМ режиме.

Б2. Защитное заземление

Это заземление, выполняемое в целях электробезопасности (ПУЭ 1.7.29).

Защитное заземление обеспечивает защиту электроустановки и оборудования, а также защиту людей от воздействия опасных напряжений и токов, могущих возникнуть при поломках, неправильной эксплуатации техники (т.е. в АВАРИЙНОМ режиме) и при разрядах молний.
Также защитное заземление используется для защиты аппаратуры от помех при коммутациях в питающей сети и интерфейсных цепях, а также от электромагнитных помех, наведенных от работающего рядом оборудования.

  • в составе внешней молниезащитной системы в виде заземленного молниеприёмника
  • в составе системы защиты от импульсного перенапряжения
  • в составе электросети объекта
Б2.1. Заземление в составе молниезащиты

Молния — это разряд или другими словами «пробой», возникающий ОТ облака К земле, при накоплении в облаке заряда критической величины (относительно земли). Примерами этого явления в меньших масштабах является “пробой” (wiki) в конденсаторе и газовый разряд (wiki) в лампе.

Воздух — это среда с очень большим сопротивлением (диэлектрик), но разряд преодолевает его, т.к. обладает большой мощностью. Путь разряда проходит по участкам наименьшего сопротивления, таким как капли воды в воздухе и деревья. Этим объясняется корнеобразная структура молнии в воздухе и частое попадание молнии в деревья и здания (они имеют меньшее сопротивление, чем воздух в этом промежутке).
При попадании в крышу здания, молния продолжает свой путь к земле, также выбирая участки с наименьшим сопротивлением: мокрые стены, провода, трубы, электроприборы — таким образом представляя опасность для человека и оборудования, находящихся в этом здании.

Молниезащита предназначена для отвода разряда молнии от защищаемого здания/ объекта. Разряд молнии, идущий по пути наименьшего сопротивления попадает в металлический молниеприёмник над объектом, затем по металлическим молниеотводам, расположенным снаружи объекта (например, на стенах), спускается до грунта, где и расходится в нём (напоминаю: грунт является средой, имеющей свойство “впитывать” в себя электрический ток).

Для того, чтобы сделать молниезащиту «привлекательной» для молнии, а также для исключения распространения молниевых токов от деталей молниезащиты (приёмник и отводы) внутрь объекта, её соединение с грунтом производится через заземлитель, имеющий низкое сопротивление заземления.

466743cd4bfe321b2f2a8ee0ced6ef5b

Заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает полный и быстрый переход молниевых токов в грунт, не допуская их распространение по объекту.

Б2.2. Заземление в составе системы защиты от импульсного перенапряжения (УЗИП)

УЗИП предназначено для защиты электронного оборудования от заряда, накопленного на каком-либо участке линии/сети в результате воздействия электромагнитного поля (ЭМП), наведенного от рядом стоящей мощной электроустановки (или высоковольтной линии) или ЭМП, возникшего при близком (до сотен метров) разряде молнии.

Ярким примером этого явления является накопление заряда на медном кабеле домовой сети или на “пробросе” между зданиями во время грозы. В какой-то момент приборы, подключенные к этому кабелю (сетевая карта компьютера или порт коммутатора), не выдерживают «размера» накопившегося заряда и происходит электрический пробой внутри этого прибора, разрушающий его (упрощенно).
Для “стравливания” накопившегося заряда параллельно “нагрузке” на линию перед оборудованием ставит УЗИП.

Классический УЗИП представляет собой газовый разрядник (wiki), рассчитанный на определенный «порог» заряда, который меньше “запаса прочности” защищаемого оборудования. Один из электродов этого разрядника заземляется, а другой — подключается к одному из проводов линии/ кабеля.

При достижении этого порога внутри разрядника возникает разряд :-) между электродами. В результате чего накопленный заряд сбрасывается в грунт (через заземление).

f85c96eb36ae536a9b959a9b7524932a

Как и в молниезащите — заземление в такой системе является обязательным элементом, т.к. именно оно обеспечивает своевременное и гарантированное возникновение разряда в УЗИПе, не допуская превышение заряда на линии выше безопасного для защищаемого оборудования уровня.

Б2.3. Заземление в составе электросети

Третий пример защитной роли заземления — это обеспечение безопасности человека и электрооборудования при поломках/ авариях.

Проще всего такая поломка описывается замыканием фазного провода электросети на корпус прибора (замыкание в блоке питания или замыкание в водонагревателе через водную среду). Человек, коснувшийся такого прибора, создаст дополнительную электрическую цепь, через которую побежит ток, вызывающий в теле повреждения внутренних органов — прежде всего нервной системы и сердца.

Для устранения таких последствий используется соединение корпусов с заземлителем (для отвода аварийных токов в грунт) и защитные автоматические устройства, за доли секунды отключающие ток при аварийной ситуации.

3a05fef7fbc83d6086dc5371802b40e8

Например, заземление всех корпусов, шкафов и стоек телекоммуникационного оборудования.

В. Качество заземления. Сопротивление заземления.

Для корректного выполнения заземлением своих функций оно должно иметь определенные параметры/ характеристики. Одним из главных свойств, определяющих качество заземления, является сопротивление растеканию тока (сопротивление заземления), определяющее способность заземлителя (заземляющих электродов) передавать токи, поступающие на него от оборудования в грунт.
Это сопротивление имеет конечные значения и в идеальном случае представляет собой нулевую величину, что означает отсутствие какого-либо сопротивления при пропускании «вредных» токов (это гарантирует их ПОЛНОЕ поглощение грунтом).

В1. Факторы, влияющие на качество заземления
  • площадь ( S ) электрического контакта заземлителя с грунтом
  • электрическое сопротивление ( R ) самого грунта, в котором находятся электроды
В1.1. Площадь контакта заземлителя с грунтом.

Чем больше будет площадь соприкосновения заземлителя с грунтом, тем больше площадь для перехода тока от этого заземлителя в грунт (тем более благоприятные условия создаются для перехода тока в грунт). Это можно сравнить с поведением автомобильного колеса на повороте. Узкая покрышка имеет небольшую площадь контакта с асфальтом и легко может начать скользить по нему, “отправив” автомобиль в занос. Широкая покрышка, да еще и немного спущенная, имеет много бОльшую площадь контакта с асфальтом, обеспечивая надежное сцепление с ним и, следовательно, надежный контроль за движением.(Пример оказался неграмотным. Спасибо SVlad — комментарий: habrahabr.ru/post/144464/#comment_4854521)

Увеличить площадь контакта заземлителя с грунтом можно либо увеличив количество электродов, соединив их вместе (сложив площади нескольких электродов), либо увеличив размер электродов. При применении вертикальных заземляющих электродов последний способ очень эффективен, если глубинные слои грунта имеют более низкое электрическое сопротивление, чем верхние.

В1.2. Электрическое сопротивление грунта (удельное)

Напомню: это величина, определяющая — как хорошо грунт проводит ток через себя. Чем меньшее сопротивление будет иметь грунт, тем эффективнее/ легче он будет “впитывать” в себя ток от заземлителя.

Примерами грунтов, хорошо проводящих ток, является солончаки или сильно увлажненная глина. Идеальная природная среда для пропускания тока — морская вода.
Примером “плохого” для заземления грунта является сухой песок.

(Если интересно, можно посмотреть таблицу величин удельного сопротивления грунтов, используемых в расчётах заземляющих устройств).

Возвращаясь к первому фактору и способу уменьшения сопротивления заземления в виде увеличения глубины электрода можно сказать, что на практике более чем в 70% случаев грунт на глубине более 5 метров имеет в разы меньшее удельное электрическое сопротивление, чем у поверхности, за счет большей влажности и плотности. Часто встречаются грунтовые воды, которые обеспечивают грунту очень низкое сопротивление. Заземление в таких случаях получается очень качественным и надежным.

В2. Существующие нормы сопротивления заземления

Так как идеала (нулевого сопротивления растеканию) достигнуть невозможно, все электрооборудование и электронные устройства создаются исходя из некоторых нормированных величин сопротивления заземления, например 0.5, 2, 4, 8, 10, 30 и более Ом.

  • для подстанции с напряжением 110 кВ сопротивление растеканию токов должно быть не более 0,5 Ом (ПУЭ 1.7.90)
  • при подключении телекоммуникационного оборудования, заземление обычно должно иметь сопротивление не более 2 или 4 Ом
  • для уверенного срабатывания газовых разрядников в устройствах защиты воздушных линий связи (например, локальная сеть на основе медного кабеля или радиочастотный кабель) сопротивление заземления, к которому они (разрядники) подключаются должно быть не более 2 Ом. Встречаются экземпляры с требованием в 4 Ом.
  • у источника тока (например, трансформаторной подстанции) сопротивление заземления должно быть не более 4 Ом при линейном напряжении 380 В источника трехфазного тока или 220 В источника однофазного тока (ПУЭ 1.7.101)
  • у заземления, использующегося для подключения молниеприёмников, сопротивление должно быть не более 10 Ом (РД 34.21.122-87, п. 8)
  • для частных домов, с подключением к электросети 220 Вольт / 380 Вольт:
    • при использовании системы TN-C-S необходимо иметь локальное заземление с рекомендованным сопротивлением не более 30 Ом (ориентируюсь на ПУЭ 1.7.103)
    • при использовании системы TT (изолирование заземления от нейтрали источника тока) и применении устройства защитного отключения (УЗО) с током срабатывания 100 мА необходимо иметь локальное заземление с сопротивлением не более 500 Ом (ПУЭ 1.7.59)
    В3. Расчёт сопротивления заземления

    Для успешного проектирования заземляющего устройства, имеющего необходимое сопротивление заземления, применяются, как правило, типовые конфигурации заземлителя и базовые формулы для расчётов.

    Конфигурация заземлителя обычно выбирается инженером на основании его опыта и возможности её (конфигурации) применения на конкретном объекте.

    c07cb3df29d491365e2aa53425acb593

    Выбор формул расчёта зависит от выбранной конфигурации заземлителя.
    Сами формулы содержат в себе параметры этой конфигурации (например, количество заземляющих электродов, их длину, толщину) и параметры грунта конкретного объекта, где будет размещаться заземлитель. Например, для одиночного вертикального электрода эта формула будет такой:

    Точность расчёта обычно невысока и зависит опять же от грунта — на практике расхождения практических результатов встречается в почти 100% случаев. Это происходит из-за его (грунта) большой неоднородности: он изменяется не только по глубине, но и по площади — образуя трёхмерную структуру. Имеющиеся формулы расчёта параметров заземления с трудом справляются с одномерной неоднородностью грунта, а расчёт в трёхмерной структуре сопряжен с огромными вычислительными мощностями и требует крайне высокую подготовку оператора.
    Кроме того, для создания точной карты грунта необходимо произвести большой объем геологических работ (например, для площади 10*10 метров необходимо сделать и проанализировать около 100 шурфов длиной до 10 метров), что вызывает значительное увеличение стоимости проекта и чаще всего не возможно.

    В свете вышесказанного почти всегда расчёт является обязательной, но ориентировочной мерой и обычно ведётся по принципу достижения сопротивления заземления “не более, чем”. В формулы подставляются усредненные значения удельного сопротивления грунта, либо их наибольшие величины. Это обеспечивает “запас прочности” и на практике выражается в заведомо более низких (ниже — значит лучше) значениях сопротивления заземления, чем ожидалось при проектировании.

    Строительство заземлителей

    При строительстве заземлителей чаще всего применяются вертикальные заземляющие электроды. Это связано с тем, что горизонтальные электроды трудно заглубить на большую глубину, а при малой глубине таких электродов — у них очень сильно увеличивается сопротивление заземления (ухудшение основной характеристики) в зимний период из-за замерзания верхнего слоя грунта, приводящее к большому увеличению его удельного электрического сопротивления.

    В качества вертикальных электродов почти всегда выбирают стальные трубы, штыри/ стержни, уголки и т.п. стандартную прокатную продукцию, имеющую большую длину (более 1 метра) при сравнительно малых поперечных размерах. Этот выбор связан с возможностью легкого заглубления таких элементов в грунт в отличии, например, от плоского листа.

    Источник https://zandz.com/ru/biblioteka/sistema_uravnivaniya_potencialov/

    Источник https://electrozamer.ooo/blog/sistema-uravnivaniya-potentsialov

    Источник https://habr.com/ru/post/144464/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: