Заземление электроустановок

 

Содержание

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Система заземления TN-C

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Система заземления TN-S

Система заземления TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

Система заземления TN-C-S

Система заземления TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

Система заземления TT

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Читайте также  Требования к заземляющим проводникам

Система IT

Система заземления IT

Система заземления IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Заземление электроустановок

Заземление электроустановок – обязательная составляющая комплекса мер по защите промышленного оборудования и работающих на нем людей от поражения током. С учетом существующего разнообразия электротехнических приборов и агрегатов вопросам их безопасной эксплуатации уделяется повышенное внимание. Каждый тип заземляемого оборудования имеет свои особенности, вынуждающие пользователей сетей принимать специальные защитные меры. В соответствие с правилами заземления электроустановок и их устройством для этих целей применяются особым образом организованные системы защиты.

Классификация систем заземления

Общепринятая классификация систем заземления осуществляется по следующим основным признакам:

  • Состояние нейтрали электросети (заземленное или изолированное).
  • Способ ее прокладки от подстанции с понижающим трансформатором до конечной электроустановки потребителя.
  • Особенности подключения нагрузки к нейтральной жиле.

Основным документом, согласно которому производится классификация этих систем, являются ПУЭ (правила устройства электроустановок). В них подробно рассматриваются характерные признаки, согласно которым принято различать действующие защитные системы. Для их обозначения применяются английские буквенные символы T, N, I, C и S, которые расшифровываются как «заземление», «нейтраль», «изолированное», «общая» и «раздельная».

Обратите внимание: По данной маркировке удается определить, какой способ защиты источника тока применен в данной системе и какие схемы защитного заземления оборудования могут быть использованы на потребительской стороне.

Основные системы заземления

При обустройстве действующих линий энергоснабжения в России традиционно применяются следующие основные системы:

  • TN-C, из обозначения которой следует, что на всем протяжении трассы нулевой рабочий N и защитный PE проводники объединены в общую шину PEN (C – это «common»).
  • TN-S, означающая раздельную прокладку упоминавшихся выше проводников («Select»).
  • TN-C-S, из названия которой следует, что на части трассы проводники PE и N объединены, а начиная с какого-то места они прокладываются раздельно.

На практике также встречаются редко используемые системы TT и IT, применяемые только в исключительных случаях. Такой уникальный способ построения заземляющей структуры как система с изолированным нулем, например, востребован при электроснабжении сооружений, где необходимо обеспечить высокий уровень безопасности. В частности, это касается электрооборудования, устанавливаемого на горнодобывающих шахтных предприятиях. Объясняется это тем, что при подземных работах нередки случаи скопления взрывоопасных газов, а система IT, особенностью которой является пониженное искрообразование, в этом случае является самой безопасной.

Требования к заземлению электроустановок до 1000 Вольт

Заземление оборудования – это комплекс технических мероприятий, позволяющих получить надежное электрическое соединение между защищаемыми корпусами электроустановок и землей. Оно организуется с целью защиты оперативного персонала и работающих на оборудовании людей от случайного токового удара.

В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:

  • при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;
  • при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.

Важно! При правильно обустроенной системе заземления попавший на корпус станка, например, опасный потенциал не причинит прикоснувшемуся к нему человеку никакого вреда.

Принципиальная схема заземления электроустановки

Объясняется это тем, что, при пробое изоляции основная часть токового заряда стечет по заземляющей шине в защитный контур, сопротивление которого на порядок ниже, чем тот же показатель для тела человека.

Естественные заземлители

Согласно правилам ПУЭ, корпуса технологического оборудования и других приборов должны подключаться к естественным или искусственным заземлителям (ИЗУ). При реализации первого из этих способов традиционно используются следующие подсобные элементы:

  • металлические каркасы проложенных в земле конструкций, имеющие прямой контакт с ней;
  • металлические кожуха кабелей, прокладываемых непосредственно в грунте;
  • обычные металлические трубы (за исключением газовых и нефтепроводов);
  • рельсы железнодорожных путей.

Обратите внимание: Использование готовых конструкций существенно упрощает решение проблемы заземления, упрощая этот процесс.

Кроме того, их использование при организации эффективного заземления позволяет несколько снизить затраты на его обустройство.

Важность сопротивления стеканию току

Основное требование к заземлениям до 1000 Вольт – их способность создать надежную цепочку для стекания аварийных токовых зарядов в грунт. Ее оценивают величиной сопротивления, которое приходится преодолевать токам замыкания на землю.

Направление растекания тока в землю

Согласно нормативным документам (ПУЭ, в частности) сопротивление заземления (сопротивление растеканию электрического тока) должно быть:

  • в частных домах с напряжением питания 220 и 380 Вольт, должно составлять не более 30-ти Ом.
  • для промышленного оборудования (трансформаторов подстанций, в частности, или генераторов и сварочных аппаратов) не должен превышать 4-х Ом.
  • в отношении источника тока (генератора или трансформатора) не более 2, 4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.

Чтобы достигнуть нормируемых ПУЭ значений сопротивления, потребуется принять специальные меры. Обычно они сводятся к следующим типовым процедурам:

  1. увеличение площади соприкосновения составляющих устройств заземления с грунтом;
  2. повышение качества контактов в местах сочленения отдельных элементов и медных соединительных шин;
  3. улучшение проводимости самой почвы (за счет постоянного увлажнения или добавления соляного раствора, например).

Теми же требованиями предписывается периодически (не реже одного раза в 6 лет) проверять сопротивление заземляющего контура на соответствие его величины утвержденным нормам.

Работа заземления при нарушении защитной изоляции токоведущих частей

Самая распространенная неисправность, встречающаяся при эксплуатации электрооборудования – замыкание фазы на металлический корпус из-за разрушения защитной изоляции.

Дополнительная информация: В современных бытовых приборах, оснащенных импульсными источниками питания с вилкой евро стандарта, опасный потенциал может постоянно присутствовать на металлическом корпусе.

В зависимости от того, какие защитные меры приняты при работе с оборудованием, возможны следующие степени безопасности пользователя:

  1. Самый опасный вариант – когда металлический корпус прибора не заземлен, а УЗО совсем не установлено. Попадание фазы на проводящие ток части никак не проявляется, кроме как ощутимый удар при случайном прикосновении.
  2. В отсутствие УЗО корпус подключен к контуру установленного заземления, а ток утечки по цепи стекания очень велик. В этом случае прибор сработает мгновенно и отключает питающую линию или отдельную ее цепочку.
  3. При наличии УЗО корпус не заземлен, что обнаруживается только при протекании тока утечки, который вызовет срабатывание устройства защиты. За время порядка 200-300 миллисекунд прикоснувшийся к прибору человек ощутит лишь легкий удар током.
  4. И, наконец, самый безопасный вариант предполагает заземление корпуса и одновременную установку в данную ветку отдельного УЗО.

О первом случае, связанном с отсутствием специальных защитных средств, нечего и говорить, а вот второй вариант не совсем безопасен. Это объясняется тем, что при большом сопротивлении переходов и значительных номиналах предохранителей остаточный потенциал на корпусе прибора очень опасен для работающего человека. Так, при сопротивлении заземляющей конструкции в 4 Ома и предохранителе номиналом 25 Ампер он может достигнуть 100 Вольт.

Важно! В последнем случае два защитных устройства дополняют друг друга и нивелируют возможные неполадки в одном из них.

При попадании фазы на корпус, а через него – на заземляющий проводник ток благополучно стекает в землю. Одновременно с этим УЗО мгновенно реагирует на утечку и отключает линию и электроустановку, исключая возможность поражения работающего на ней персонала.

Работа заземления при неисправностях электрической части оборудования

Помимо этого, если ток утечки существенно превышает порог срабатывания установленного в цепи предохранителя – может сработать и сам защитный элемент, дублируя действие УЗО. Какой из этих двух приборов отключит цепь первым – зависит от их быстродействия и величины тока стекания на землю (при этом не исключается их одновременное срабатывание).

Защита станков и электрооборудования в цехах

В соответствие с действующими правилами ПУЭ различные виды заземлений в электроустановках до 1000 Вольт отличают по принадлежности их к той или иной системе. А по типу заземляемых устройств различают следующие варианты:

  • Защита типового станочного оборудования.
  • Заземление электродвигателей и сварочных аппаратов.
  • Защита передвижных установок и эксплуатируемых электроприборов.
Читайте также  Проверка состояния изоляции электросети и заземления оборудования

В этом разделе рассматривается первый пункт из перечня, касающийся станков и другого оборудования, устанавливаемого в заводских цехах.

Хорошо известно, что при работе на станочном оборудовании риск случайного попадания фазы на корпус достаточно велик. Чтобы правильно заземлить станок в цеху – потребуется разобраться со следующими моментами:

  1. Где проложен заземляющий контур в рабочей зоне.
  2. Какой толщины должна выбираться шина, применяемая для соединения корпуса станка с защитным контуром.
  3. В каком месте накладывается стационарное заземление.
  4. Какие заграждающие приспособления допускается использовать для ограничения доступа к опасным частям оборудования.

Рассмотрением всех этих вопросов должен заниматься цеховой электрик, который знаком с расположением элементов заземляющего хозяйства и полностью владеет информацией по порядку подсоединения корпуса станка к ЗУ. Он должен знать, в частности, что для заземления электрооборудования в его конструкции предусмотрена специальная точка, к которой подсоединяется заземляющая шина.

Правила заземления электродвигателя

Согласно действующим нормативам электродвигатели также подлежат обязательному защитному заземлению.

Обратите внимание: Исключением из этого требования является ситуация, когда корпус электродвигателя располагается на металлическом пьедестале, непосредственно связанном с грунтом.

Во всех остальных случаях его обязательно нужно будет соединить специальной медной жилой с заземляющим контуром (фото ниже).

Заземление электродвигателя

В ПУЭ особо отмечается, что такое соединение должен иметь каждый электродвигатель, независимо от их количества в данном электрохозяйстве.

Последовательное подключение нескольких агрегатов в заземляющую цепочку категорически запрещено (в этом случае при обрыве линии в одном месте заземления лишаются все двигатели).

Таблица сечений заземляющих проводников

Заземление сварочных аппаратов

При работе со сварочным оборудованием заземление его корпуса согласно требованиям ПУЭ также обязательно. Помимо этой части электрического агрегата заземляться должен один из выводов трансформаторной вторичной обмотки (к другой клемме подсоединяется держатель электродов). Заземляемый вывод на корпусе обозначается соответствующим значком и оснащается приспособлением, надежно фиксирующим протянутую от защитного контура шину.

Схема заземления сварочного аппарата

Величина переходного сопротивления защитного контура или ЗУ для сварочного оборудования не должна превышать 10-ти Ом. Если потребуется повысить электропроводимость заземляющей конструкции – увеличивают контактную площадь всех соединений, включая поверхность соприкосновения с землей.

Как и в случае с рассмотренными ранее электродвигателями последовательное включение сварочных аппаратов в заземляющую цепочку запрещено.

Защита передвижных установок

Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.

Обратите внимание: В отдельных случаях допускается в качестве заземления для передвижек применять имеющиеся на объекте стационарные ЗУ.

Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).

Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).

Защита электроприборов

Для обеспечения требуемого уровня защиты при работе с электрическими приборами различного типа возможны следующие защитные меры:

  1. надежная защита открытых для общего доступа токоведущих частей;
  2. усиление защитной изоляции методом ее наращивания;
  3. ограничение доступности к корпусам оборудования.

Кроме того, для этих целей могут применяться пониженные напряжения (если это позволяют особенности конструкции).

Заземление электроустановок

Чтобы избежать нежелательных пробоев изоляции и попадания опасного напряжения на корпуса электроприборов используются следующие «классические» методы:

В отдельных случаях ограничение проявляется в том, что такие образцы электроаппаратуры не допускается эксплуатировать в особо опасных помещениях (влажных или с сильным запылением). Если наряду с заземлением применяются другие способы защиты работающих с приборами людей – они не должны взаимно исключать друг друга. Другими словами их действие не должно снижать эффективность уже имеющейся и работающей в этом месте защиты.

Применение элементов естественных заземлителей допускается только в ситуациях, когда исключена вероятность нанесения подземным конструкциям ощутимого ущерба, связанного с протеканием по ним аварийного тока.

Заземление и зануление

Для защиты человека от удара током в особо опасных условиях эксплуатации нередко используется принцип одновременного заземления и зануления электроустановок. Всем, кто не знаком со вторым понятием, следует знать, что зануление электроустановок – это умышленное соединение их корпусов с нейтралью подводящей силовой линии. Понять принцип его действия поможет ознакомление с тем, как реализуется это способ защиты на практике.

Суть зануления состоит в превращении случайного попадания сетевого напряжения на корпус установки (из-за повреждения изоляции, например) в однофазное короткое замыкание. Отсюда следует, что и рассматриваемое нами заземление и зануление, как системы, выполняют функцию защиты от поражения электрическим током. Но делают они это каждая по-своему (смотрите фото ниже).

Схема заземления и зануления

В одном случае (при заземлении) для получения цепочки стекания тока пробоя применяется отдельное заземляющее устройство, снижающее потенциал на корпусе прибора до безопасного уровня. Для «срабатывания» системы зануления тот же корпус электрически соединяется с нейтралью питающей сети.

Токопроводящие части электроустановок подлежат заземлению или занулению во всех случаях, когда защищаемое оборудование работает в помещениях повышенной опасности (с большой запыленностью и высоким уровнем влажности). Специалистам, занимающимся вопросами его защиты важно четко представлять себе отличие этих двух понятий. Кроме того им потребуется хорошо разбираться в том как правильно сделать контур заземления для данного образца оборудования.

Периодичность проверки

Для проверки текущего состояния ЗУ согласно требованиям ПУЭ проводятся периодические испытания заземляющих контуров. Они позволяют убедиться в соответствии их параметров (сопротивления стеканию тока, в частности) установленным нормативам.

Дополнительная информация: Для контроля текущего состояния ЗУ используются специальные измерительные приборы, подключаемые к нему по особым схемам.

В ПУЭ также оговаривается, что периодичность проверки (испытаний) действующих систем зависит от класса самого проводимого обследования. Так, визуальные осмотры заземляющих конструкций должны проводиться не реже одного раз в полгода. Если та же процедура сопровождается выборочным вскрытием почвы в вызывающих подозрения местах – проверки проводятся не реже раза в 12 лет. Нормы и сроки проверок для различных конструкций заземляющих устройств могут несколько отличаться от рассмотренных показателей (смотрите монографию Р. Н. Карякина под тем же названием).

В заключение отметим, что после ознакомления с предложенным материалом заинтересованный пользователь сможет четко представить себе, для чего нужно заземление и как оно обустраивается. Знание всех тонкостей этого вопроса поможет ему уберечь себя и своих близких от опасности поражения электрическим током. Кроме того, умение разбираться в них обеспечит сохранность эксплуатируемого на объекте электрооборудования.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Виды и правила заземления электроустановок

Заземление электроустановок необходимо для их безопасной эксплуатации. Если заземлительная система отсутствует или установлена неправильно, резко повышается вероятность травматизма и выхода из строя электрооборудования.

Заземляющее устройство

Система заземления представляет собой совокупность заземляющего контура и проводников, позволяющих безопасно отвести ток в грунт. Существует два типа заземлителей — естественные и искусственные. Естественные заземлители представляют собой металлические конструкции, основное предназначение которых не связано с обеспечением электробезопасности. Согласно ПУЭ, к естественным заземлителям относятся:

  1. Каркасы сооружений (из железобетона или чистого металла), имеющие контакт с почвой.
  2. Водопроводные трубы, находящиеся под землей. Запрещено использовать для заземления нефте- и газопроводы, а также любые другие трубопроводы, предназначенные для транспортировки горючих веществ.
  3. Опоры ЛЭП.
  4. Нетоковедущие железнодорожные пути (только при условии наличия сварных соединений между рельсами).

Искусственный заземлитель — это конструкция, сооруженная специально для защиты от тока. В качестве искусственных заземляющих устройств используют:

  • неокрашенные металлические пруты (минимальный диаметр — 10 миллиметров);
  • стальной уголок (толщиной от 4 миллиметров);
  • листы стали (толщина — от 4 миллиметров и сечение в разрезе — свыше 48 квадратных миллиметров).

Для сооружения искусственных заземлительных систем пруты закапывают или вбивают в почву. Длина электрода не должна быть меньше 2,5 метров. После установки проводников в землю, их сваривают между собой. Надземная часть заземлительного контура должна находиться на определенном расстоянии от земли (не менее 50 сантиметров).

Обратите внимание! Согласно требованиям Правил устройства электроустановок, контур должен иметь, по крайней мере, два соединения с проводниками.

По предназначению оборудование принято делить на две разновидности — защитную и рабочую. Защитные заземлительные устройства обеспечивают безопасность жильцов или персонала и предотвращают риск поражения тока из-за случайного касания корпуса электрической установки.

Схема устройства искусственного заземлителя для защиты электроустановок

Защитное заземление обустраивается для:

  • всего электрооборудования и машин, не установленных на глухозаземленных опорах;
  • электрических шкафов, металлических коробов распредщитов;
  • трубопроводов с силовыми кабелями;
  • оплеток силовых кабелей.

Рабочие заземлительные устройства применяют в случаях, когда, несмотря на повреждение изоляционного слоя и последовавшего за этим пробоя на корпус, необходима бесперебойная работа оборудования. К примеру, рабочим заземлением оснащают нули трансформаторов и электрогенераторов. Также рабочим считается заземление молниеотводов.

Обратите внимание! По нормативам ПУЭ заземление электрических сетей с номиналом напряжения 42 вольта (при переменном токе) или 110 вольт (при постоянном токе) осуществляется в обязательном порядке.

Маркировка заземлительных систем

Заземлительные устройства отличаются схемой соединения и количеством проводников. Выделяют такие системы:

Читайте также  Комплект заземления для 19 монтажного оборудования (0.3м - 6 шт, 0,4 м - 2 шт. гайка М6 - 16 шт ) CZ-6-0,5 RC19

В названии заземления первая буква указывает на разновидность источника питания:

Вторая буква информирует о способе заземления открытых токопроводящих элементов электрической установки:

  • N — прямой контакт с местом заземления источника питания;
  • T — непосредственная связь с грунтом.

Буквы после дефиса сообщают информацию о методе обустройства защитного проводника (PE) и нуля:

  • C — задачи проводников выполняются одним проводником PEN;
  • S — функции проводников выполняются несколькими проводящими устройствами.

Система заземления TN-C

Заземление электроустановок типа TN-C применяется в трехфазных четырехпроводных и однофазных двухпроводных электросетях. Чаще всего подобные заземлительные системы встречаются в сооружениях старой постройки. Преимущества TN-С состоят в простоте и доступности системы. Однако уровень безопасности системы оставляет желать лучшего. Поэтому в современных зданиях TN-C не используется.

Заземление электроустановок по схеме TN-C

Система заземления TN-C-S

Защитное заземление электроустановок TN-C-S чаще всего применяется при проведении реконструкций старых электросетей с объединенными рабочими и защитными проводниками на вводе. Таким образом, чтобы установить в здании систему TN-C-S, в нем должно существовать более старое заземление — TN-C-S. Усовершенствованная система также отличается простотой установки и эксплуатации, но при этом более надежна.

Система заземления TN-S

В TN-S рабочие и нулевые проводники располагаются по отдельности. При этом нуль (PE) объединяет все токоведущие элементы электрической установки. Во избежание повторного заземления обустраивают трансформаторную подстанцию с основным заземлением. Достоинствами TN-S считаются небольшая длина проводника от кабельного входа в установку до системы заземления, а также низкая вероятность электромагнитных помех.

Система заземления TT

Данный тип заземления характерен тем, что все токоведущие компоненты имеют непосредственный контакт с землей. При этом заземлители установки электрически не связаны с заземлителем нейтрали электроподстанции.

Система заземления IT

Характерная особенность заземления IT — изолированность нейтрали от грунта или ее заземления через элементы с высоким сопротивлением. В результате такого решения удается значительно уменьшить воздействие тока утечки на корпус. IT применяют в строениях, работающих в условиях жестких требований по электробезопасности.

Схема устройства заземления IT

Правила заземления электродвигателя

По установленным нормативам электрические двигатели подлежат обязательному заземлению. Данное требование не распространяется на ситуации, когда корпус электродвигателя смонтирован на металлической основе, имеющей контакт с грунтом через металлические элементы или заземляющий проводник. Во всех других ситуациях корпус двигателя соединяют проводником с заземлительным контуром.

Все электрические устройства должны иметь выделенные соединения с контуром заземления. Последовательное объединение двигателей с контуром не допускается, поскольку при нарушении любого из соединений вся цепь потеряет функциональность.

Чтобы правильно установить защитный заземлитель, понадобится дополнительный заземляющий элемент в силовом кабеле. Один конец проводника присоединяют к клеммной коробке электрического двигателя, а второй — к корпусу шкафа, где находится блок управления электроустановкой.

Обратите внимание! Прежде чем выполнять подключение, необходимо соединить с грунтом электрошкаф.

При пробое между проводником заземления и токопроводом возникает короткое замыкание, в результате чего размыкается защитное или коммутирующее устройство.

Сечение проводника для заземления должно соответствовать нормативам, указанным в ПУЭ (приведены в таблице ниже).

Таблица для выбора сечения проводника для заземления

Заземление сварочных аппаратов

Кроме корпуса сварочного аппарата заземлению подлежит один из выводов вторичной обмотки оборудования (ко второму подключается держатель электродов). Заземляемый вывод вторичной обмотки обозначают графически и оснащают стационарным выведенным фиксатором (для надежной стыковки с заземлителем).

Уровень переходного сопротивления заземлительного контура не должен быть выше 10 Ом. Если нужно поднять электропроводимость контура, контактную площадь делают больше стандартной.

Как и в случае с другими электроустановками, последовательное объединение сварочного оборудования не разрешается. Каждый аппарат должен иметь выделенное соединение с магистралью заземления здания.

Схема заземления сварочного аппарата

Правила расчета

Заземление электроустановок должно осуществляться после предварительных расчетов. Планирование позволяет установить характеристики контура, в том числе его разновидность, геометрическую форму, площадь, размеры, количество электродов и дистанцию между ними. Все указанные данные, в совокупности с показателем токопроводимости земли, имеют непосредственное влияние на общее сопротивление системы.

Особое значение при проведении расчетов имеет удельное сопротивление грунта. Также при осуществлении расчетов учитывают сезонный фактор, делая на это соответствующие поправки.

Правила для переносных установок

В некоторых ситуациях допускается отказ от местного заземлителя для электрооборудования, оснащенного автономными источниками питания с нейтралью, не вступающей в контакт с грунтом. Обычно переносное заземление используется для защиты установок, не питающих другое оборудование. При этом источники питания должны иметь собственные заземлители, а все элементы установки — стыковаться с корпусом источника электропитания.

Работы по заземлению мобильных электрических установок выполняют в соответствии с требованиями к напряжению или сопротивлению. Показатель сопротивления не должен превышать 25 Ом. Устройства с автономными источниками электропитания и изолированными нейтралями всегда контролируются по уровню сопротивления изоляции. Кроме того, нужно обеспечить постоянный доступ для проведения проверок работоспособности изоляции.

Заземление для переносных электроустановок

Переносные заземлительные установки монтируются во время перерывов в работе электрооборудования. Установка защиты начинается только после отключения напряжения в электросети. Заземление устанавливается на все отключенные фазы. Причем установка осуществляется со всех сторон, откуда подается напряжение.

К монтажу переносных систем в электрических установках с напряжением свыше 1000 вольт допускаются исключительно специалисты, обладающими группой электробезопасности не меньше четвертой. Для установок с напряжением менее 1000 вольт необходима третья или выше группа электробезопасности.

Обратите внимание! Нельзя задействовать в качестве заземляющих устройств элементы, непредназначенные для этой цели. Также недопустимы скрутки.

Заземление электроустановок на предприятиях

На производстве нередко возникают ситуации, когда напряжение в корпусе вышедшего из строя оборудования отмечается не только между открытыми участками агрегата и грунтом, но и между корпусами разных устройств. Также напряжение фиксируют между корпусом оборудования и различными элементами сооружения, трубами и другими металлическими частями.

Для защиты оборудования используются обширные системы, включающие и связывающие между собой элементы установок, способные производить ток, а также металлические элементы технологических устройств и всего сооружения в целом. Задача проводимых мероприятий состоит в выравнивании потенциалов всех элементов цехов. В результате все заземляемые станки на предприятии входят в единую систему.

Заземление промышленных электроустановок

Защита необязательна для приборов с номинальным напряжением до 42 вольт переменного тока и до 100 вольт постоянного.

Технология заземления

Предпочтение при организации защиты отдается естественным заземлителям. Не допускается использование алюминия (кабельные оболочки, неизолированные провода), поскольку этот материал подвергается окислению в грунте, а окись — отличный изолятор.

Если нет естественных заземлительных элементов, изготавливают искусственные. Электроды (прутки, полосы, уголки или трубы) устанавливают по вертикали в грунт на глубину 2,5–3 метра. Причем верхний конец штыря должен быть выше уровня земли на 60–70 сантиметров. Установленные штыри соединяют между собой стальной полоской (толщина не меньше 4 миллиметров).

Электрод должен соответствовать определенным параметрам:

  • диаметр трубы — 30–50 мм и толщина стенок — 3,5 мм;
  • диаметр стержня — 10–123 мм;
  • толщина угловой стали — от 4 мм.

Альтернатива вертикальному заземлению — горизонтальное. Однако такое решение требует больших ресурсов рабочего пространства. Горизонтальные полосы кладут на ребро в заранее выкопанную траншею (глубина ее составляет от 60 до 70 сантиметров).

Если систему устанавливают в агрессивной среде (кислые или щелочные почвы), в качестве конструкционного материала выбирают медь или оцинковку.

Строительство заземляющего устройства подстанции

В помещениях проводку для заземления прокладывают в виде магистралей. Ее располагают таким образом, чтобы она была доступна для контроля, но при этом защищена от повреждений механического характера. Если в помещении происходит выделение едких газов, проводку прокладывают по стенам с использованием скоб.

Соединение проводников с корпусами и кожухами электрооборудования осуществляется сваркой или болтами. Все контакты зачищают и покрывают лаком.

Проверка заземляющих устройств

Чтобы поддерживать заземляющие устройства в надлежащем техническом состоянии, необходимы регулярные проверки оборудования. В перечень проверочных мероприятий входят следующие действия:

  1. Внешний осмотр наземной части оборудования.
  2. Тестирование наличия электроцепи между заземляющим устройствам и подзащитными компонентами.
  3. Замер сопротивления контура.
  4. Мониторинг пробивных трансформаторных предохранителей.
  5. Тестирование надежности соединений с естественными заземлительными устройствами.
  6. Замеры сопротивления петли фаза–ноль.
  7. Измерение удельного сопротивления земли для опор линий электропередачи, если напряжение превышает 1 кВт.
  8. Вскрытие почвы в отдельных местах для визуального контроля за элементами системы.

Проверка присутствия электроцепи между заземлением и защищаемым электрооборудованием осуществляется для подтверждения непрерывности и надежности системы. В ней недопустимы обрывы или некачественные контакты. В простых сетях (без больших разветвлений) сопротивление переходных контактов замеряют непосредственно между защитным и защищаемым элементом системы. Для сложных сетей используется другая тактика: вначале делается замер между заземлителем и отдельными частями магистрали, а уже затем — между участками и заземленными элементами.

Для измерений используют специальный аппарат — омметр (например, М-372). Также применяют измерительные мосты (типы приборов — УМВ, МMB, MBУ) или измерительное устройство типа МC-08. Непосредственно замеры сопротивления заземляющего контура выполняют измерителями М-416б ИСЗ-01, МС-08, М-1103.

Чтобы защитить электросети (до 1 кВт) с отведенной от земли нейтралью от перенапряжений, трансформаторы оснащают пробивными предохранителями. Надежность функционирования предохранителей зависит от правильности сборки и регулярного контроля за их техническим состоянием. В связи с этим проверка предохранителей проводится как при пусковых работах, так и при ремонте оборудования или перестановке данных устройств. Также предохранители проверяются при наличии предположения об их возможном срабатывании.

В случае повреждения участка и если показатель тока однофазного замыкания 1К соответствует следующему ниже условию, сеть отключается.

Формула расчета тока замыкания

Чтобы определить ток однофазного замыкания, делают замер полного сопротивления электроцепи однофазного замыкания на корпус устройства или грунт. Самым простым способом измерения считается замер сопротивления петли ноль–фаза. Для этого используют вольтметр и амперметр.
Все устройства, используемые для измерений, должны иметь технический паспорт. В документе указывается схема заземления, результаты последних замеров и проверок состояния системы, данные о действиях, осуществленных при проведении ремонтных работ и внесенных изменениях.

Источник https://zandz.com/ru/biblioteka/sistemy_zazemlenieya_tns_tnc_tncs_tt_it/

Источник https://fishkielektrika.ru/zazemlenie-elektroustanovok

Источник https://220.guru/electroprovodka/zazemlenie-molniezashhita/sistemy-zazemleniya-elektroustanovok.html

Понравилась статья? Поделиться с друзьями: