Расчет технологического запаса газа в газопроводе

 

Содержание

Как посчитать количество газа в трубе под давлением

Расчет количества опасного вещества, находящегося в газопроводах ИП .

В соответствии со ст. 2 и приложением 1 к Федеральному закону от 21.07.1997 года №116-ФЗ «О промышленной безопасности опасных производственных объектов», опасными производственными объектами являются сети газораспределения и сети газопотребления, на которых используется природный газ в количествах, указанных в приложении 2, а именно свыше 1 тонны.

1. Объем участка газопровода определяется по формуле:

где dвн – внутренний диаметр участка газопровода, м;

Рассчитать объем газа в трубе под давлением

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Расчет количества опасного вещества, находящегося в газопроводах ИП .
В соответствии со ст. 2 и приложением 1 к Федеральному закону от 21.07.1997 года №116-ФЗ «О промышленной безопасности опасных производственных объектов», опасными производственными объектами являются сети газораспределения и сети газопотребления, на которых используется природный газ в количествах, указанных в приложении 2, а именно свыше 1 тонны.

1. Объем участка газопровода определяется по формуле:

где dвн – внутренний диаметр участка газопровода, м;

L – протяженность газопровода, м.

2. Масса опасного вещества определяется по формуле:

где P – абсолютное давление участка газопровода, выраженное в кгс/см 2 ;

V – объем участка газопровода, м 3

ρ – плотность природного газа при нормальных условиях, кг/м 3

3. Рассчитываем количество природного газа в подземном и надземном газопроводах высокого давления ( P изб = 6 кгс/см 2 ), диаметром 57х3,5мм, протяженностью 10,7м.

4. Рассчитываем количество природного газа в надземном газопроводе низкого давления ( P изб = 0,02 кгс/см 2 ), диаметром 57х3,5мм, протяженностью 1,5м.

5. Рассчитываем количество природного газа в надземном газопроводе низкого давления ( P изб = 0,02 кгс/см 2 ), диаметром 32х2,8мм, протяженностью 0,5м.

6. Рассчитываем количество природного газа во внутреннем газопроводе низкого давления ( P изб = 0,02 кгс/см 2 ), диаметром 32х2,8мм, протяженностью 1,0м.

7. Рассчитываем количество природного газа во внутреннем газопроводе низкого давления ( P изб = 0,02 кгс/см 2 ), диаметром 25х2,8мм, протяженностью 5,0м.

8. Рассчитываем количество природного газа во внутреннем газопроводе низкого давления ( P изб = 0,02 кгс/см 2 ), диаметром 20х2,8мм, протяженностью 4,5м.

9. Определяем общее количество природного газа в газопроводах ИП

Таким образом, сеть газопотребления ИП . не является опасным производственным объектом.

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

Расчет параметров трубы: как правильно рассчитать вес, массу и объем трубы

Трубопроводный транспорт в условиях России играет очень важную роль. По нему перекачиваются огромные количества жидких продуктов. Кроме воды транспортируется сжиженный газ, нефть и продукты её переработки и другие жидкости, в ряде случаев агрессивные.

Вместимость такого изделия определяется диаметром внутреннего пространства, например для размера 820 х 10 миллиметров рабочий диаметр мы можем определить соотношением Д = 820 – 10 х 2 = 800 мм. Однако, лучше сразу перейти к общепринятой единице – метру. При внутреннем диаметре изделия 0,8 метра соотношение для расчёта выглядит следующим образом:

Однако высчитывать объем одиночного изделия не имеет смысла. Лучше сразу применить это соотношение для определения объёма всего трубопровода.

Этот показатель важен для того чтобы знать количества перекачиваемого продукта, которое останется в трубопроводе по окончании транспортировки нужного объема. Однако трубопроводы не используются в режиме разовой перекачки. Они предназначены для постоянной эксплуатации.

По такой же методике рассчитываются объёмы емкостей цилиндрической формы – цистерн, бочек и прочих подобных.

В трубопроводном транспорте для магистралей используются в основной массе электро сварные одно или двух шовные трубы с различной толщиной стенок. Для повышения производительности трубопровода продукты по нему перекачиваются под большим давлением – до 130 атмосфер.

Поэтому для производства используется листовой металл толщиной до 36 миллиметров. Основной способ соединения в трубопроводах – электросварка, поэтому в качестве материала изготовления используются стали с низким содержанием углерода, такие, как 09Г2С, 09Г2ФБ и другие подобные.

Перевод объема газа в стандартные (нормальные) условия

Перевод объема газа в стандартные (нормальные) условия

Состояние газа однозначно задается тремя макроскопическими параметрами: давлением, объемом и температурой. Данный калькулятор закона идеального газа поможет вам определить объем Вашего газа в стандартных условиях.

Cтандартные условия — это стандартный набор условий (температура, давление) для измерений, позволяющий проводить сравнения между наборами данных. Принятые в разных отраслях значения давления и температуры в стандартных условиях различны, поэтому при пересчете необходимо уточнение условий, в которых проходит процесс.

Название IUPAC ГОСТ 2939–63 Авиационные SATP
Давление 100000Па (1000 мбар) 101325 Па

Калькулятор использует уравнение Менделеева – Клапейрона, чтобы найти значение переменной уравнения идеального газа. Идеальный газ представляет собой множество бессистемно движущихся частиц, которые взаимодействуют друг с другом посредством упругого столкновения и подчиняются определенному закону, элементарному уравнению и поддаются исследованию. В общем, газ может действовать как идеальный, если температура высока, а давление низкое, поскольку в таких условиях потенциальная энергия становится менее значительной по сравнению с кинетической энергией.

Как упоминалось выше, уравнение состояния идеального газа, устанавливает связь между объемом газа (V), давлением (P) и температурой (Т). Закон идеального газа был сформулирован французским физиком Эмилем Клапейроном ещё в 1834 году путем объединения уравнений, характеризующих газовые законы Бойля-Мариотта и Гей-Люссака. Выглядит это уравнение следующим образом: .

Менделеева фамилия появилась в названии этого уравнения благодаря его вкладу в преобразование исходного выражения к современному виду. В 1874 г. русский химик, воспользовавшись законом Авогадро, предоставил уравнение Клапейрона в более удобном для использования виде. А также Менделеев ввел такое понятие, как универсальная газовая постоянная.

где: P — давление газа, Па; V — объем газа, м³; T — температура газа, К; v- количество вещества, моль; m — масса газа, кг; M — молярная масса газа, кг/моль; R -универсальная постоянная идеального газа R=8,31431 Дж/(моль·К).

Расчет объема газа в баллоне

При составлении сметы на выполнение разнообразных работ с использованием технических газовых смесей возникает необходимость рассчитать их точный объем. В сметной документации содержание газа зачастую рассчитано в таких измерительных единицах, как литры, кубометры, килограммы, и даже количество баллонов. Задача специалистов – унифицировать единицы измерения, уточнив размеры, емкость и прочие параметры газовых баллонов. Для расчета в кубометрах можно использовать госстандарты, и применив определенную формулу, рассчитать объем газа. Но есть способ выполнить расчеты проще – использовать онлайн калькулятор расчета объема газа в баллоне.

С его помощью можно вычислить объем таких находящихся под давлением газов как:

При расчете учитывается также температура и давление, разные для каждого типа газовой смеси. Онлайн калькулятор газа потребуется и при переводе газовых величин – с его помощью рассчитывается значение единицы измерения газа зависимо от агрегатного состояния. Это удобный и простой в использовании инструмент, разработанный для широкого применения специалистами разных отраслей промышленности, конструкторов, инженеров, технологов. Калькуляторы разных типов применяются:

  • Для расчетов параметров рабочей среды
  • Уточнения номинального объема при заправке автомобиля
  • В химической отрасли и на производствах
  • В медицинской отрасли

Расчет расхода сжиженного газа

Расчет газа с применением пропана или бутана имеет свои особенности, но не представляет особых сложностей. Имеет значение плотность горючего вещества, которая изменяется с повышением или понижением температуры и зависит от состава газовой смеси. Постоянным остается только вес сжиженного топлива.

Объем используемого газа отличается зимой и летом, поэтому нет смысла применять единицы м³ для определения расхода сжиженного газа на 1 кВт тепла, для обозначения берутся килограммы, которые не меняются при смене сезонов.

Расчет на 1 кВт тепла

Количество рассчитывается на отопление дома и подогрев воды в системе. Если на газе готовится еда, это нужно учитывать дополнительно.

Используется формула Q = (169.95 / 12.88) · F, где:

  • Q — масса топлива;
  • 169,95 — годовая сумма кВт на обогрев 1 м² дома;
  • 12,88 — теплотворная способность пропана;
  • F — квадратура строения.

Полученное значение умножается на стоимость 1 кг сжиженной смеси, чтобы посчитать расход на закупку требуемого количества. Цена обычно дается за 1 кг, а не за 1 м³, что следует учитывать.

Для чего нужны расчеты параметров труб

В современном строительстве используются не только стальные или оцинкованные трубы. Выбор уже довольно широк — ПВХ, полиэтилен (ПНД и ПВД), полипропилен, металлопластк, гофрированная нержавейка.

Они хороши тем, что имеют не такую большую массу, как стальные аналоги. Тем не менее, при транспортировке полимерных изделий в больших объемах знать их массу желательно — чтобы понять, какая машина нужна.

Вес металлических труб еще важнее — доставку считают по тоннажу. Так что этот параметр желательно контролировать.

То, что нельзя измерить, можно рассчитать

Знать площадь наружной поверхности трубы надо для закупки краски и теплоизоляционных материалов. Красят только стальные изделия, ведь они подвержены коррозии в отличие от полимерных. Вот и приходится защищать поверхность от воздействия агрессивных сред.

Используют их чаще для строительства заборов, каркасов для хозпостроек (гаражей, сараев, беседок, бытовок), так что условия эксплуатации — тяжелы, защита необходима, потому все каркасы требуют окраски.

Вот тут и потребуется площадь окрашиваемой поверхности — наружная площадь трубы.

При сооружении системы водоснабжения частного дома или дачи, трубы прокладывают от источника воды (колодца или скважины) до дома — под землей.

И все равно, чтобы они не замерзли, требуется утепление. Рассчитать количество утеплителя можно зная площадь наружной поверхности трубопровода.

Только в этом случае надо брать материал с солидным запасом — стыки должны перекрываться с солидным запасом.

Сечение трубы необходимо для определения пропускной способности — сможет ли данное изделие провести требуемое количество жидкости или газа. Этот же параметр часто нужен при выборе диаметра труб для отопления и водопровода, расчета производительности насоса и т.д.

Внутренний и наружный диаметр, толщина стенки, радиус

Трубы — специфический продукт. Они имеют внутренний и наружный диаметр, так как стенка у них толстая, ее толщина зависит от типа трубы и материала из которого она изготовлена. В технических характеристиках чаще указывают наружный диаметр и толщину стенки.

Внутренний и наружный диаметр трубы, толщина стенки

Имея эти два значения, легко высчитать внутренний диаметр — от наружного отнять удвоенную толщину стенки: d = D — 2*S. Если у вас наружный диаметр 32 мм, толщина стенки 3 мм, то внутренний диаметр будет: 32 мм — 2 * 3 мм = 26 мм.

Если же наоборот, имеется внутренний диаметр и толщина стенки, а нужен наружный — к имеющемуся значению добавляем удвоенную толщину стеки.

С радиусами (обозначаются буквой R) еще проще — это половина от диаметра: R = 1/2 D. Например, найдем радиус трубы диаметром 32 мм. Просто 32 делим на два, получаем 16 мм.

Измерения штангенциркулем более точные

Что делать, если технических данных трубы нет? Измерять. Если особая точность не нужна, подойдет и обычная линейка, для более точных измерений лучше использовать штангенциркуль.

Расчет площади поверхности трубы

Труба представляет собой очень длинный цилиндр, и площадь поверхность трубы рассчитывается как площадь цилиндра. Для вычислений потребуется радиус (внутренний или наружный — зависит от того, какую поверхность вам надо рассчитать) и длина отрезка, который вам необходим.

Формула расчета боковой поверхности трубы

Чтобы найти боковую площадь цилиндра, перемножаем радиус и длину, полученное значение умножаем на два, а потом — на число «Пи», получаем искомую величину. При желании можно рассчитать поверхность одного метра, ее потом можно умножать на нужную длину.

Для примера рассчитаем наружную поверхность куска трубы длиной 5 метров, с диаметром 12 см. Для начала высчитаем диаметр: делим диаметр на 2, получаем 6 см.

Теперь все величины надо привести к одним единицам измерения. Так как площадь считается в квадратных метрах, то сантиметры переводим в метры. 6 см = 0,06 м.

Дальше подставляем все в формулу: S = 2 * 3,14 * 0,06 * 5 = 1,884 м2. Если округлить, получится 1,9 м2.

Расчет веса

С расчетом веса трубы все просто: надо знать, сколько весит погонный метр, затем эту величину умножить на длину в метрах.

Вес круглых стальных труб есть в справочниках, так как этот вид металлопроката стандартизован. Масса одного погонного метра зависит от диаметра и толщины стенки.

Один момент: стандартный вес дан для стали плотностью 7,85 г/см2 — это тот вид, который рекомендован ГОСТом.

Таблица веса круглых стальных труб

В таблице Д — наружный диаметр, условный проход — внутренний диаметр, И еще один важный момент: указана масса обычных стального проката, оцинкованные на 3% тяжелее.

Таблица веса профилированной трубы квадратного сечения

Как высчитать площадь поперечного сечения

Формула нахождения площади сечения круглой трубы

Если труба круглая, площадь сечения считать надо по формуле площади круга: S = π*R2. Где R — радиус (внутренний), π — 3,14. Итого, надо возвести радиус в квадрат и умножить его на 3,14.

Расчет расхода газа

Мощность котла или конвектора зависит от потерь тепла в строении. Средний подсчет проводится с учетом общей площади дома.

При расчете расхода газа учитываются нормы прогрева квадратного метра при высоте потолков до 3 м:

  • в южных регионах берется 80 Вт/м²;
  • в северных — до 200 Вт/м².

В формулах учитывается суммарная кубатура отдельных комнат и помещений в здании. На нагревание каждого 1 м³ общего объема выделяется 30 – 40 Вт в зависимости от района.

По мощности котла

unnamed 61

Баллонный и природный газ рассчитывается в разных единицах
Расчет основывается на мощности и площади отопления. Применяется усредненный показатель расхода — 1 кВт на 10 м². Следует уточнить, что берется не электрическая мощность котла, а тепловая мощность оборудования. Часто такие понятия подменяются, и получается неправильный расчет потребления газа в частном доме.

Объем природного газа измеряется в м³/ч, а сжиженный — в кг/ч. Практика показывает, что на получение 1 кВт тепловой мощности расходуется 0,112 м³/ч магистральной топливной смеси.

По квадратуре

Удельное потребление тепла рассчитывается по представленной формуле, если разница между уличной и внутренней температурой составляет примерно 40°С.

Используется соотношение V = Q / (g · K / 100), где:

  • V — объем природного газового топлива, м³;
  • Q — тепловая мощность оборудования, кВт;
  • g — наименьшая калорийность газа, обычно равняется 9,2 кВт/м³;
  • K — коэффициент полезного действия установки.

В зависимости от давления

2055e268762f708cf6313e92a1359d0e 0

Количество газа фиксируется счетчиком
Объем газа, проходящего по трубопроводу, измеряется счетчиком, а расход подсчитывается в виде разницы между показаниями в начале и конце пути. Измерение зависит от порога давления в суживающемся сопле.

Ротационные счетные приборы используются для измерения давления больше 0,1 МПа, а разница уличной и внутренней температуры составляет 50°С. Показатель расхода газового топлива считывается при нормальном состоянии окружающей среды. В промышленности пропорциональными условиями считается давление 10 – 320 Па, разница температур 20°С и относительная влажность воздуха 0. Расход топлива выражается в м³/ч.

Расчет по диаметру

Расчет диаметра газопровода выполняется перед началом строительства
Скорость газа в газопроводе высокого давления зависит от площади сечения коллектора и составляет в среднем 2 – 25 м/с.

Пропускная способность находится по формуле: Q = 0.67 · D² · p, где:

  • Q — расход газа;
  • D — условный проходной диаметр газопровода;
  • p — рабочее давление в газопроводной трубе или показатель абсолютного давления смеси.

На величину показателя влияет наружная температура, нагрев смеси, избыточное давление, атмосферные характеристики и влажность. Расчет диаметра газопровода делается при составлении проекта системы.

С учетом теплопотерь

Для расчета потребления газовой смеси требуется знать тепловые потери строения.

Используется формула Q = F (T1 – T2) (1 + Σb) · n / R, где:

  • Q — теплопотери;
  • F — площадь утепляющего слоя;
  • Т1 — наружная температура;
  • Т2 — внутренняя температура;
  • Σb — сумма дополнительных потерь тепла;
  • n — коэффициент расположения защитного слоя (в специальных таблицах);
  • R — сопротивление передаче тепла (рассчитывается в конкретном случае).

Определение теплопотерь представляет собой сложный подсчет и проводится специалистами на стадии проекта. Можно заказать нахождение потерь на любом этапе эксплуатации строения.

По счетчику и без

bez nazvaniya 11

Расход газа зависит от утепления стен и климатических условий региона
По прибору определяется расход газа за месяц. Применяются стандартные нормы расхода смеси, если счетчик не установлен. Для каждого региона страны нормативы устанавливаются отдельно, но в среднем принимаются из расчета 9 — 13 м³ в месяц на одного человека.

Показатель устанавливается местными органами самоуправления и зависит от климатических условий. Расчет ведется с учетом числа владельцев помещения и людей, фактически проживающих на указанной жилплощади.

Для чего определяется пропускная способность?

При расчете водопровода стоит задача определить оптимальный диаметр трубы для обеспечения нормативного потребления воды.

Если сечение слишком мало, это приводит к недостаточному напору в трубах даже при большом давлении, в результате:

  • насосное оборудование быстрее изнашивается,
  • чаще происходят аварии на линии,
  • увеличивается расход энергии.

Для ремонта систем требуются дополнительные траты, что повышает стоимость эксплуатации.

В гидравлике пропускная способность всей системы рассчитывается по самому узкому месту. Часто трубопроводы сравнивают с электропроводкой, только по трубам бежит вода, а по проводам — электрический ток.

Как узнать сечение провода по его диаметру для многожильного или сегментного кабеля

Если определение диаметра для одножильного проводника не вызывает никаких проблем, то измерение многожильного или сегментного может вызвать определенные сложности.

Измерение сечения многожильного провода

При определении диаметра жилы данного кабеля нельзя измерять этот размер сразу для всех проволочек жилы: значение получится неточным, так как между жилами имеется пространство. Поэтому данный кабель сначала необходимо зачистить от изоляции, затем распушить многожильный проводник и посчитать количество проволок в жиле. Далее любым способом (штангенциркуль, линейка, микрометр) измеряют диаметр одной жилы и определяют площадь поперечного сечения проволочки. После этого полученное значение умножают на количество проволочек в пучке и получают точный размер имеющегося проводника.

Измерение сегментного проводника

Определение размеров сегментного проводника несколько сложнее, чем измерения круглого одножильного или многожильного кабеля. Для того, чтобы правильно оценить площадь поперечного сечения такого проводника необходимо использовать специальные таблицы. Например, для расчёта площади сечения сегмента алюминиевого проводника определяют высоту и ширину сегмента и используют следующую таблицу:

Определение площади поверхности трубы

Важно определять площадь поверхности, так как это позволяет рассчитать, какое количество грунта, краски или укрывного материала потребуется для той или иной трубы с учетом ее формы, материала и веса. Масса труб, изготовленных из ПВХ или пропилена, значительно меньше, чем стальных, хотя площадь их одинакова

Для вычисления площади трубы, потребуется выполнить следующие действия:

  • Определить радиус трубы сначала в сантиметрах;
  • После перевести полученный результат в метры;
  • После следует высчитать длину трубы также в метрах;
  • Умножить полученный результат на известный радиус, в результате чего можно узнать внешнюю площадь трубы.

Можно вычислить площадь и прямоугольной трубы с учетом веса, достаточно знать, сколько весит погонный метр, тоннаж можно определить по специальным таблицам, применяемым в строительстве. Данную величину следует умножить на длину трубы в метрах. Такие расчеты позволяют определить количество краски, грунта и теплоизоляционного материала, а также потери тепла при передаче последнего от такого теплового узла, как котельная.

Уменьшение потребления газа

Экономия газа напрямую связана с уменьшением потерь тепла. Ограждающие конструкции, такие как стены, потолок, пол в доме обязательно защищаются от влияния холодного воздуха или грунта. Применяется автоматическая регулировка работы отопительного оборудования для результативного взаимодействия наружного климата и интенсивности работы газового котла.

Утепление стен, кровли, потолков

Уменьшить расход газа можно с помощью утепления стен Наружный теплозащитный слой создает преграду для охлаждения поверхностей, чтобы потребить наименьшее количество топлива.
Статистика показывает, что часть нагретого воздуха уходит через конструкции:

  • крыша — 35 – 45%;
  • неутепленные оконные проемы — 10 – 30%;
  • тонкие стены — 25 – 45%;
  • входные двери — 5 – 15%.

Полы защищаются материалом, который имеет допустимую влагопроницаемость по норме, т. к. при намокании теряются теплоизоляционные характеристики. Стены лучше изолировать снаружи, потолок утепляется со стороны чердака.

Расчет технологического запаса газа в газопроводе

Зачастую при проведении ремонтных работ на ГРС, на газораспределительных сетях или при возникновении аварийной ситуации на газопроводе возникает необходимость газоснабжения потребителей из запасов природного газа, находящегося в газопроводах. При проведении вышеуказанных работ необходимо заранее знать объём запаса газа в газопроводах, для этого газораспределительные организации регулярно проводят инвентаризацию имеющихся газопроводов (с учетом выбывших из эксплуатации и вновь построенных газопроводов) и определяют объём запаса газа. Объём запаса газа в газораспределительных сетях определяется по каждой ГРС (по источнику газоснабжения) с разбивкой по категориям газопроводов (по давлению газа). Существующие категории газопроводов отражены в табл. 23.

Классификация газопроводов по давлению

Рабочее давление в газопроводе, МПа

Скорости движения газа надземных и внутренних газопроводов, м/с

Буквенно- цифровые обозначения газопроводов (по ГОСТ 21.609-83)

ГО (общее обозначение)

от 0,6 до 1,2 включительно

от 0,3 до 0,6 включительно

от 0,005 до 0,3 включительно

До 0,005 включительно

Для локальных участков газопроводов (протяженностью до 5 км) при отсутствии отводов и при небольшой скорости газового потока объём запаса газа рассчитывается по формуле (16)

50

где Уп — геометрический объем пространства (полости) газопровода;

Ра -давление газа абсолютное, МПа;

Т -температура газа, К;

Р — давление газа при стандартных условиях, МПа;

Т — температура газа при стандартных условиях, К;

Z — коэффициент сжимаемости газа (определяется по формуле 4).

На протяженных участках (свыше 5 км), при многочисленных отводах и при скорости газа более 15 м/с, в расчетах необходимо учитывать падение давления газа в конце участка газопровода и изменение температуры газа в начале участка газопровода и в конце. Изменение давления газа связано с тем, что на протяжении участка газопровода существуют отводы, по которым производится отбор газа, а также падение давления газа связано с физическими свойствами природного газа — динамической вязкостью газа, что также приводит к падению давления в конце участка.

Причиной изменения температуры газа в газопроводе является внешняя среда. Если в зимнее время газ двигался сначала по надземному газопроводу и затем длительное время по подземному газопроводу, то в конце участка газопровода температура газа может быть выше, чем в начале участка, поэтому необходимо учитывать температуру грунта.

Объём запаса газа на протяженных участках определяется по формуле

51

Коэффициент сжимаемости газа — Zcp — также будет различным в начале газопровода и в конце. Усредненное значение коэффициента сжимаемости определяется по формуле (13)

52

Среднее давление, Рср, МПа, определяется по формуле (14)

53

где Рн — начальное абсолютное давление, МПа;

Рк — конечное абсолютное давление, МПа.

Средняя температура газа, Тср, К, определяется по формуле (15)

54

где Тн — начальная температура газа, К;

Т- конечная температура газа, К;

Т — температура грунта, К.

Пример расчета объёма технологического запаса газа приведен в Приложении 12.

Приложение 3. Приказ Ростехнадзора от 26.12.2018 N 647 «Об утверждении Руководства по безопасности «Методика оценки риска аварий на опасных производственных объектах магистрального трубопроводного транспорта газа»

Приложение 3. ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА КОЛИЧЕСТВ ОПАСНЫХ ВЕЩЕСТВ НА НЕКОТОРЫХ СОСТАВЛЯЮЩИХ ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТОВ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ

struct link

Приложение N 3
к Руководству по безопасности
«Методика оценки риска аварий
на опасных производственных объектах
магистрального трубопроводного
транспорта газа», утвержденному приказом
Федеральной службы по экологическому,
технологическому и атомному надзору
от __ _________ 2018 г. N ____

struct link

ПОСЛЕДОВАТЕЛЬНОСТЬ
РАСЧЕТА КОЛИЧЕСТВ ОПАСНЫХ ВЕЩЕСТВ НА НЕКОТОРЫХ
СОСТАВЛЯЮЩИХ ОПАСНЫХ ПРОИЗВОДСТВЕННЫХ ОБЪЕКТОВ
МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ

1. Природный газ.

1.1. Расчет количества (массы) природного газа на анализируемом участке МГ выполняется посекционно (в секциях между линейными кранами), с последующим сложением полученных «секционных» масс для получения общего количества газа на участке.

1.2. Приблизительный расчет массы газа M, т, в секции МГ осуществляется по формуле (см. также рисунок 1 настоящего приложения)

где Pн — проектное (абс.) давление на выходе предыдущей (по отношению к секции) КС, МПа;

Pк — расчетное (абс.) давление на входе последующей КС, МПа;

LКС — расстояние между двумя последовательными КС, км;

x — расстояние от предыдущей КС до середины секции, км;

Dу — условный (внутренний) диаметр МГ, мм;

Lсекц — длина секции газопровода, км;

T — средняя температура газа в секции (в точке x), К, упрощенно рассчитываемая по формуле

где Tк — зимняя температура на входе последующей КС, К;

Tн — зимняя температура на выходе предыдущей (по отношению к секции) КС, К.

Рисунок 1. Схема МГ с обозначением входных параметров
для расчета массы газа (не приводится)

1.3. Для расчета массы газа M, т, в газопроводе-отводе можно использовать вышеприведенную формулу (1), подставляя значение LКС вместо Lсекц; Pн — абсолютное давление в точке подключения газопровода-отвода к МГ, МПа; Pк — абсолютное давление в конце газопровода-отвода (на входе ГРС), МПа; x — половина общей длины газопровода-отвода, км; T — средняя зимняя температура в газопроводе-отводе, К.

1.4. Для расчета массы газа M, т, в технологических газопроводах (на КС, ГРС, АГНКС и т.д.) используют формулу (1), подставляя значение Lтех — длину технологического газопровода вместо Lсекц, м; Px — фактическое (абс.) давление в середине технологического газопровода, МПа; Dу — условный (внутренний) диаметр технологического газопровода, мм; T — средняя зимняя температура газа в технологическом газопроводе, К.

1.5. Для расчета массы газа M, т, в сосудах используется формула

где Pс — рабочее (абсолютное) давление в сосуде, МПа;

Vс — внутренний объем сосуда, м3;

Tс — температура (зимняя) газа в сосуде, К.

2. Опасные вещества в жидком состоянии.

2.1. Масса M, т, опасного вещества в жидком состоянии в трубопроводе рассчитывается по формуле

где Lтруб — длина трубопровода, км;

— плотность опасного вещества в условиях транспортировки, т/м3.

2.2. Масса M, т, опасного вещества в жидком состоянии в сосуде рассчитывается по формуле

Источник https://truba71.ru/dlya-vody/massa-gaza-v-trube.html

Источник https://studref.com/574950/logistika/raschet_tehnologicheskogo_zapasa_gaza_gazoprovode

Источник https://bazanpa.ru/rostekhnadzor-prikaz-n647-ot26122018-h4278160/prilozhenie3/

Читайте также  Соединение металлических труб – как не прибегать к узкоспециализированным технологиям?
Понравилась статья? Поделиться с друзьями: