Всё, что необходимо знать о металле ТИТАН (Ti)…

 

Содержание

Всё, что необходимо знать о металле ТИТАН (Ti)…

JIBkdJx3EsEz2NYlCtpqRYlun7k 100

-Титан обладает высокой прочностью, хорошей коррозионной стойкостью и при этом имеет сравнительно небольшую массу, что делает его применение незаменимым в областях, где важны хорошие механические свойства изделий одновременно с их массой. На странице представлено описание данного металла: физические, химические свойства, области применения, марки и его сплавов, виды продукции.

Основные сведения:
-Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Данный материал сочетает легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия:
-Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана:
-В периодической системе элементов Д. И. Менделеева Ti расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения почти в два раза больше, чем у железа. Известны две аллотропические модификации титана (две разновидности данного металла, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления. По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но указанный материал может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью. Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает. Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости Ti — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности. Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8 до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником. Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Данный материал составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Физические и механические свойства:

Запчасти на фото: C3260. Фото в бортжурнале Toyota Altezza

Химические свойства:

Фото в бортжурнале Toyota Altezza

Марки титана и сплавов:
-Наиболее распространенными марками титана являются ВТ1-0, ВТ1-00, ВТ1-00св. Титан указанных марок называется техническим. Данные марки не содержат в своем составе легирующие элементы, только незначительное количество примесей. Содержание Ti в марке ВТ1-0 составляет приблизительно 99,24-99,7%, в ВТ1-00 — 99,58-99,9%, ВТ1-00св — 99,39-99,9%. ВТ1-0, ВТ1-00 поставляется в виде листов, плит, прутков и труб. Проволока чаще всего используется для различных сварочных целей и производится из марки ВТ1-00св. В настоящее время известно довольно большое число серийных титановых сплавов, отличающихся по химическому составу, механическим и технологическим свойствам. Наиболее распространенные легирующие элементы в таких материалах: алюминий, ванадий, молибден, марганец, хром, кремний, олово, цирконий, железо. Титановый сплав ВТ5 содержит 5% алюминия. Он отличается более высокими прочностными свойствами по сравнению с титаном, но его технологичность невелика. Сплав куется, прокатывается, штампуется и хорошо сваривается. Из марки ВТ5 получают титановые прутки (круги), проволоку и трубы, а также листы. Его применяют при изготовлении деталей, работающих при температуре до 400 °С. Сплав титана ВТ5-1 помимо 5% алюминия содержит 2-3% олова. Олово улучшает его технологические свойства. Из марки ВТ5-1 изготавливают все виды полуфабрикатов, получаемых обработкой давлением: титановые плиты, а также листы, поковки, штамповки, профили, трубы и проволоку. Он предназначен для изготовления изделий, работающих в широком интервале температур: от криогенных (отрицательных) до + 450 °С. Титановые сплавы ОТ4 и ОТ4-1 в качестве легирующих элементов содержат алюминий и марганец. Они обладают высокой технологической пластичностью (хорошо деформируются в горячем и холодном состоянии) и хорошо свариваются всеми видами сварки. Указанный материал идет, в основном, на изготовление титановых плит и листов, лент и полос, а также прутков и кругов, поковок, профилей и труб. Из титановых сплавов ОТ4 и ОТ4-1 изготовляют с применением сварки, штамповки и гибки детали, работающие до температуры 350 °С. Данные материалы имеют недостатки: 1) сравнительно невысокая прочность и жаропрочность; 2) большая склонность к водородной хрупкости. В сплаве ПТ3В марганец заменяется на ванадий. Титановый сплав ВТ20 разрабатывали как более прочный листовой материал по сравнению с ВТ5-1. Упрочнение марки ВТ20 обусловлено ее легированием, помимо алюминия, цирконием и небольшими количествами молибдена и ванадия. Технологическая пластичность сплава ВТ20 невысока из-за большого содержания алюминия, однако, он отличается высокой жаропрочностью. Данный материал хорошо сваривается, прочность сварного соединения равна прочности основного металла. Сплав предназначен для изготовления изделий, работающих длительное время при температурах до 500 °С. Титановый сплав ВТ3-1 относится к системе Ti — Al — Cr — Mo — Fe — Si. Он обычно подвергается изотермическому отжигу. Такой отжиг обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. Марка ВТ3-1 относится к числу наиболее освоенных в производстве сплавов. Он предназначен для длительной работы при 400 — 450 °С; это жаропрочный материал с довольно высокой длительной прочностью. Из него поставляют прутки (титановые круги), профили, плиты, поковки, штамповки.

Достоинства / недостатки:
— Достоинства:
-малая плотность (4500 кг/м3) способствует уменьшению массы выпускаемых изделий;
-высокая механическая прочность. Стоит отметить, что при повышенных температурах (250-500 °С) титановые -сплавы по прочности превосходят высокопрочные сплавы алюминия и магния;
-необычайно высокая коррозионная стойкость, обусловленная способностью Ti образовывать на поверхности -тонкие (5-15 мкм) сплошные пленки оксида ТiO2, прочно связанные с массой металла;
-удельная прочность (отношение прочности и плотности) лучших титановых сплавов достигает 30-35 и более, что почти вдвое превышает удельную прочность легированных сталей.
— Недостатки:
-высокая стоимость производства, Ti значительно дороже железа, алюминия, меди, магния;
-активное взаимодействие при высоких температурах, особенно в жидком состоянии, со всеми газами, -составляющими атмосферу, в результате чего Ti и его сплавы можно плавить лишь в вакууме или в среде инертных газов;
-трудности вовлечения в производство титановых отходов;
-плохие антифрикционные свойства, обусловленные налипанием Ti на многие материалы; титан в паре с титаном вообще не может работать на трение;
-высокая склонность Ti и многих его сплавов к водородной хрупкости и солевой коррозии;
-плохая обрабатываемость резанием, аналогичная обрабатываемости нержавеющих сталей аустенитного класса;
-большая химическая активность, склонность к росту зерна при высокой температуре и фазовые превращения при сварочном цикле вызывают трудности при сварке титана.

Области применения:
-Основная часть титана расходуется на нужды авиационной и ракетной техники и морского судостроения. Его, а также ферротитан используют как легирующую добавку к качественным сталям и как раскислитель. Технический титан идет на изготовление емкостей, химических реакторов, трубопроводов, арматуры, насосов, клапанов и других изделий, работающих в агрессивных средах. Из компактного титана изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах. По использованию в качестве конструкционного материала Ti находится на 4-ом месте, уступая лишь Al, Fe и Mg. Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов. Биологическая безвредность данного металла делает его превосходным материалом для пищевой промышленности и восстановительной хирургии. Титан и его сплавы нашли широкое применение в технике ввиду своей высокой механической прочности, которая сохраняется при высоких температурах, коррозионной стойкости, жаропрочности, удельной прочности, малой плотности и прочих полезных свойств. Высокая стоимость данного металла и материалов на его основе во многих случаях компенсируется их большей работоспособностью, а в некоторых случаях они являются единственным сырьем, из которого можно изготовить оборудование или конструкции, способные работать в данных конкретных условиях. Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Ti легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из материалов на основе Ti изготавливают обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессоров, детали воздухозаборников и направляющих в двигателях, различный крепеж. Еще одной областью применения является ракетостроение. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести. Технический титан из-за недостаточно высокой тепловой прочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т. п. Только Ti обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Также из него делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На данный материал не налипают ракушки, которые резко повышают сопротивление судна при его движении. Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и недостаточной распространенностью данного металла. Соединения титана также получили широкое применение в различных отраслях промышленности. Карбид (TiC) обладает высокой твердостью и применяется в производстве режущих инструментов и абразивных материалов. Белый диоксид (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Титанорганические соединения (например, тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности. Неорганические соединения Ti применяются в химической электронной, стекловолоконной промышленности в качестве добавки. Диборид (TiB2)- важный компонент сверхтвердых материалов для обработки металлов. Нитрид (TiN) применяется для покрытия инструментов.

Читайте также  ЧЕМ РЕЖУТ МЕТАЛЛ: ОСНОВНЫЕ СПОСОБЫ РЕЗКИ МЕТАЛЛА

-Удачной Вам эксплуатации и спасибо за внимание! Надеюсь, что помог Вам!
-С уважением DrPavlov.

Самые прочные металлы в мире: топ-10

84ee785690d31cc225fc8b741f060694

Можете ли вы представить, что произошло, если бы наши предки не обнаружили важные металлы, такие как серебро, золото, медь и железо? Наверное, мы бы до сих пор жили в хижинах, используя камень в качестве основного инструмента. Именно крепость металла сыграла важную роль в формировании нашего прошлого и теперь работают как основа, на которой мы строим будущее.

Некоторые из них очень мягкие и буквально тают в руках, как самый активный металл в мире. Другие — настолько твердые, что их невозможно согнуть, поцарапать или сломать без применения спецсредств.

А если вам интересно, какие металлы самые твердые и прочные в мире, мы ответим на этот вопрос, учитывая различные оценки относительной твердости материалов (шкала Мооса, метод Бринелля), а также такие параметры как:

  • Модуль Юнга: учитывает эластичность элемента при растяжении, то есть способность объекта к сопротивлению при упругой деформации.
  • Предел текучести: определяет максимальный предел прочности материала, после которого он начинает проявлять пластичное поведение.
  • Предел прочности при растяжении: предельное механическое напряжение, после которого материал начинает разрушаться.

10. Тантал

Тантал

У этого металла сразу три достоинства: он прочный, плотный и очень устойчив к коррозии. Кроме того, этот элемент относится к группе тугоплавких металлов, таких как вольфрам. Чтобы расплавить тантал вам придется развести огонь температурой 3 017 °C.

Тантал в основном используется в секторе электроники для производства долговечных, сверхмощных конденсаторов для телефонов, домашних компьютеров, камер и даже для электронных устройств в автомобилях.

9. Бериллий

Бериллий

А вот к этому металлическому красавцу лучше не приближаться без средств защиты. Потому что бериллий высокотоксичен, и обладает канцерогенным и аллергическим действием. Если вдыхать воздух, содержащий пыль или пары бериллия, то возникнет заболевание бериллиоз, поражающее легкие.

Однако бериллий несет не только вред, но и благо. Например, добавьте всего 0,5 % бериллия в сталь и получите пружины, которые будут упругими даже если довести их до температуры красного каления. Они выдерживают миллиарды циклов нагрузки.

Бериллий применяют в аэрокосмической промышленности для создания тепловых экранов и систем наведения, для создания огнеупорных материалов. И даже вакуумная труба Большого Адронного Коллайдера сделана из бериллия.

8. Уран

Уран

Это естественное радиоактивное вещество очень широко распространено в земной коре, но сконцентрировано в определенных твердых скальных образованиях.

Один из самых твердых металлов в мире имеет два коммерчески значимых применения — ядерное оружие и ядерные реакторы. Таким образом, конечной продукцией урановой промышленности являются бомбы и радиоактивные отходы.

7. Железо и сталь

Железо и сталь

Как чистое вещество железо не такое твердое по сравнению с другими участниками рейтинга. Но из-за минимальных затрат на добычу оно часто комбинируется с другими элементами для производства стали.

Сталь — это очень прочный сплав из железа и других элементов, таких как углерод. Это наиболее часто используемый материал в строительстве, машиностроении и других отраслях промышленности. И даже если вы не имеете к ним никакого отношения, то все равно используете сталь каждый раз, когда режете продукты ножом (если он, конечно, не керамический).

6. Титан

Титан

Титан — это практически синоним прочности. Он обладает впечатляющей удельной прочностью (30-35 км), что почти вдвое выше, чем аналогичная характеристика легированных сталей.

Будучи тугоплавким металлом, титан обладает высокой устойчивостью к нагреву и истиранию, поэтому является одним из самых популярным сплавов. Например, он может быть легирован железом и углеродом.

Если вам нужна очень твердая и при этом очень легкая конструкция, то лучше чем титан металла не найти. Это делает его выбором номер один для создания различных деталей в авиа- и ракетостроении и судостроении.

5. Рений

Рений

Это очень редкий и дорогой металл, который хотя и встречается в природе в чистом виде, обычно идет «довеском»-примесью к молибдениту.

Если бы костюм Железного человека был сделан из рения, он мог бы выдержать температуру в 2000 ° C без потери прочности. О том, что стало бы с самим Железным человеком внутри костюма после такого «фаер-шоу» мы умолчим.

Россия — третья страна в мире по природным запасам рения. Этот металл используется в нефтехимической промышленности, электронике и электротехнике, а также для создания двигателей самолетов и ракет.

4. Хром

Хром

По шкале Мооса, которая измеряет устойчивость химических элементов к царапинам, хром находится в пятерке лучших, уступая лишь бору, алмазу и вольфраму.

Хром ценится за высокую коррозионную стойкость и твердость. С ним легче обращаться, чем с металлами платиновой группы, к тому же он более распространен, поэтому хром является популярным элементом, используемым в сплавах, таких, как нержавеющая сталь.

А еще один из прочнейших металлов на Земле используется при создании диетических добавок. Конечно, вы будете принимать внутрь не чистый хром, а его пищевое соединение с другими веществами (например, пиколинат хрома).

3. Иридий

Иридий

Как и его «собрат» осмий, иридий относится к металлам платиновой группы, и по внешнему виду напоминает платину. Он очень твердый и тугоплавкий. Чтобы расплавить иридий, вам придется развести костер температурой выше 2000 °C.

Иридий считается одним из самых тяжелых металлов на Земле, а также одним из самых устойчивых к коррозии элементов.

2. Осмий

Осмий

Этот «крепкий орешек» в мире металлов относится к платиновой группе и обладает высокой плотностью. Фактически это самый плотный природный элемент на Земле (22,61 г/см3). По этой же причине осмий не плавится до 3033 ° C.

Когда он легирован другими металлами платиновой группы (такими как иридий, платина и палладий), он может использоваться во многих различных областях, где необходимы твердость и долговечность. Например, для создания емкостей для хранения ядерных отходов.

1. Вольфрам

Вольфрам – самый прочный металл в мире

Самый прочный металл, который только есть в природе. Этот редкий химический элемент также самый тугоплавкий из металлов (3422 ° C).

Впервые он был обнаружен в форме кислоты (триоксида вольфрама) в 1781 году шведским химиком Карлом Шееле. Дальнейшие исследования привели двух испанских ученых — Хуана Хосе и Фаусто д’Эльхуяра — к открытию кислоты из минерала вольфрамита, из которого они впоследствии изолировали вольфрам с помощью древесного угля.

Помимо широкого применения в лампах накаливания, способность вольфрама работать в условиях сильной жары делает его одним из наиболее привлекательных элементов для оружейной промышленности. Во время Второй мировой войны этот металл сыграл важную роль в инициировании экономических и политических отношений между европейскими странами.

Вольфрам также используется для изготовления твердых сплавов, а в аэрокосмической промышленности — для изготовления ракетных сопел.

Таблица предела прочности металлов

МеталлОбозначениеПредел прочности, МПа
СвинецPb18
ОловоSn20
КадмийCd62
АлюминийAl80
БериллийBe140
МагнийMg170
МедьCu220
КобальтCo240
ЖелезоFe250
НиобийNb340
НикельNi400
ТитанTi600
МолибденMo700
ЦирконийZr950
ВольфрамW1200

Сплавы против металлов

Сплавы

Сплавы представляют собой комбинации металлов, и основной причиной их создания является получение более прочного материала. Наиболее важным сплавом является сталь, которая представляет собой комбинацию железа и углерода.

Чем выше прочность сплава — тем лучше. И обычная сталь тут не является «чемпионом». Особенно перспективными представляются металлургам сплавы на основе ванадиевой стали: несколько компаний выпускают варианты с пределом прочности до 5205 МПа.

А самым прочным и твердым из биосовместимых материалов на данный момент является сплав титана с золотом β-Ti3Au.

Как отличить титан от нержавеющей стали и алюминия

Кольца из карбида вольфрама, титана, тистена и стали завоевали внушительную аудиторию поклонников. Вероятно, вы уже носите одно из них сами. Или находитесь в процессе выбора, сделать который мешают многочисленные вопросы. Правда ли, что вольфрамовое кольцо не царапается? Можно ли уменьшить размер титанового кольца? Чем сталь превосходит золото? Какое кольцо прочнее, а какое дороже? Даем исчерпывающие ответы и раскрываем главные преимущества колец из технологичных материалов.

Читайте также  Преимущества и недостатки велосипедов с магниевой рамой

1458 970

Описанные особенности относятся к кольцам без декоративных покрытий, цветных напылений и вставок.

Твердость и устойчивость к царапинам

Выяснить, какое кольцо легче поцарапать, поможет ранжирование твердости вольфрама, титана, стали и тистена по десятибальной шкале твердости Мооса. Чем выше числовой коэффициент, тем более твердым является металл, и тем он лучше защищен от деформаций и образования царапин.

Коэффициент твердости:

  • Карбид вольфрама — 8,5-9
  • Тистен — 7
  • Титан — 6
  • Сталь — 4-4,5

Кольца из тистена и титана сложно поцарапать при стандартных условиях ношения, даже если редко их снимать. А если поверхностные царапины со временем все-таки появились, ликвидировать дефекты легко полировкой в ювелирной мастерской. И даже после многократных полировочных процедур титановое или тистеновое кольцо будет таким же, как в день покупки.

Вольфрамовые кольца

Хотите исключить появление царапин на 100% — выбирайте карбид вольфрама. Вольфрамовое кольцо настолько твердое, что может поцарапать стекло, керамическую плитку, серебро, золото. И останется невредимым. Вольфрамовые кольца способны выдержать даже трение об асфальт, бетон или напильник из высококачественной инструментальной стали — проверка этого утверждения опытным путем убедила нас в его правдивости.

Но будем до конца откровенны: повредить поверхность карбида вольфрама на самом деле можно. Если делать это намеренно с помощью алмаза — самого твердого минерала в мире, эталона шкалы Мооса. В остальных ситуациях волноваться не о чем. Кольца из карбида вольфрама — чрезвычайно практичные. Носите их день за днем — ни единой царапинки, вмятины не дождетесь. Фантастическая способность сохранять новый вид годами проложила вольфрамовым кольцам прямую дорогу в нишу обручальных украшений и полюбилась молодоженам.

Стальные кольца противостоят появлению микродефектов в разы слабее вольфрамовых, уступают тистеновым и титановым. Но стоит добавить в рейтинг твердости два популярнейших драгоценных металла, и сталь окажется в середине списка, — коэффициент твердости золота и серебра составляет 2,5-3. То есть царапинами подобные изделия покрываются в два раза легче, чем стальные кольца.

Сравнение удельного веса — способ, требующий точных измерений

Всем известно, что алюминий это самый легкий из этих трех металлов, а сталь самая тяжелая. Но как определить, если у вас один образец и сравнивать не с чем? Это можно сделать путем измерений и вычисления плотности или удельного веса материала, который примерно составляет:

  • 2,7 г/см3 для алюминия;
  • 4,5 г/см3 у титана;
  • 7,8 г/см3 у нержавейки.

Этот способ определения требует наличия точных весов и емкости для погружения образца в воду.

После взвешивания металла необходимо определить его объем. Проще всего воспользоваться для этого, известным со школы законом Архимеда, погрузив образец в жидкость. Изменение уровня воды покажет искомую величину.

Это более сложный и длительный вариант определения и поэтому используют его очень редко. Но он тоже дает результаты и должен рассматриваться.

Какое кольцо труднее поцарапать

Вольфрамовые кольцаКольца из тистена (титан-вольфрама)Кольца из титанаКольца из стали 316L
Не царапаются.Очень трудно поцарапать.По стойкости к образованию царапин уступают и вольфраму, и тистену, но значительно превосходят сталь 316L.Со временем на поверхности могут появиться микроцарапины, влияющие на интенсивность блеска кольца, но их легко ликвидировать с помощью полировки.

Доступный и простой способ — поцарапать металлом стекло

Если коротко

  • Титан не поцарапает стекло, но оставит полоску
  • Нержавейка поцарапает, но не оставит темного следа
  • Алюминий не оставить никаких следов

Пояснение, детали

Метод основан на способности титана оставлять характерные темные следы на поверхности стекла и кафельной плитки. При этом металл не царапает стекло, а именно рисует на его поверхности. Смыть такой след можно только раствором плавиковой кислоты (HF). А нержавеющая сталь может поцарапать стекло, но темного следа не оставит. Алюминий вообще не способен нанести никаких повреждений.

Можно ли изменить размер

Размер вольфрамового, титанового или тистенового кольца невозможно уменьшить или увеличить. Оборудование традиционных ювелирных мастерских не предназначено для обработки столь твердых металлов.

Кольца из тистена

Аналогичное свойство припишем и стали 316L. Не верите — попробуйте найти мастера, который возьмется за изменение размера стального кольца. А если найдете специалиста с соответствующим оборудованием, стоимость услуги вряд ли обрадует. Ценник будет сравним с изменением размеров кольца из золота и с большой вероятностью превысит первоначальную стоимость вашего кольца.

Вольфрамовые кольцаТитановые кольцаКольца из тистенаКольца из стали 316L
Нельзя изменить размер

Выгодная альтернатива при покупке колец в интернете — выбор магазина, предоставляющего услугу бесплатного обмена. Возможность обменять кольцо неподошедшего размера по почте или при посещениие шоурума в нашем магазине доступна в течение 30 дней после получения заказа. Чтобы сократить вероятность ошибочного выбора, рекомендуем перед онлайн-покупкой ознакомиться с методами определения размера кольца в домашних условиях.

Отличить титан по искре

Если коротко

  • Титан: даст много искр ярко-белого цвета
  • Нержавейка: меньше искр желтого или красного оттенка, или искр вообще нет
  • Алюминий: не даст искру

Пояснение, детали

Во время обработки титана на точильном станке или при резком продольном трении по абразивной поверхности точильного камня контакт металла сопровождается россыпью искр ярко-белого цвета. При отсутствии абразива можно использовать мелкий напильник или даже простой бетон, хотя эффект будет меньшим.
Искры от нержавеющей стали имеют желтый и красный оттенок. Их вылетает намного меньше, а на бетоне и напильнике не будет совсем. Некоторые сорта нержавеющих сталей были разработаны, как пожаробезопасные. Искрообразование во время обработки таких металлов невозможно технологически. При трении алюминия по образивной поверхности искры не выделяются, но могут оставаться характерные серебристые следы на поверхности.

Такой тест на возможность образования искр наиболее популярный и простой, поскольку цвет действительно отличается очень сильно, а их полное отсутствие сразу говорит о том, что этот металл не титан.

После того, как вы определите какой именно металл перед вами вы можете сдать его по выгодной цене:

  • Титан за 200 – 1000 руб/кг
  • Нержавека за 60 – 90 руб/кг
  • Алюминий за 40 – 98 руб/кг

Отличия по весу

Кольца из титана

В нашей четверке обладатели самого малого веса — титановые кольца. Вариант для тех, кто предпочитает максимально легкие украшения или не привык носить кольцо и впервые решился на его покупку. Стальные кольца в 1-1,5 раза тяжелее титановых, но легче моделей из тистена.

Вольфрамовые кольца по весу сравнимы с изделиями из золота и платины, включенных в десятку самых тяжелых металлов в мире. В среднем в 4 раза тяжелее титановых моделей.

Кольца из карбида вольфрамаКольца из титанаКольца из тистена (титан-вольфрама)Кольца из стали 316L
Отличаются значительным весом, ощущаются на руке как золотые или платиновые кольца.Самые легкие, почти не ощущаются на руке.Легче вольфрамовых, тяжелее колец из титана и стали.Легче вольфрамовых и тистеновых, тяжелее колец из титана.

Свойства титана

22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.

Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.

Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него. Металл характеризуется низкой плотностью и высокой прочностью. Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства. При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким. Эта особенность обуславливает наличие 2 видов материала: чистого и технического.

  1. Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
  2. Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.

Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.

Свойства титана

Титан теряет прочность при малейшем присутствии в нем примесей других металлов

Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность. Вещество не реагирует на элементы, находящиеся в окружающей атмосфере. Изменение параметров начинается при повышении температуры до +400°С и выше. Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы. Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.

Титан и конкуренция с другими металлами

Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:

  1. По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов. Антикоррозионные характеристики титана значительно превышают показатели других металлов.
  2. При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
  3. При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
  4. Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
  5. Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
  6. Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.
Читайте также  Тугоплавкие металлы

Выгодная цена

Доступная цена — немаловажное достоинство всех четырех сплавов. Говоря «доступная», подразумеваем сравнение с высокой ценовой планкой драгоценных металлов. Обладатели самого бюджетного ценника — стальные кольца. Модели из карбида вольфрама обойдутся дороже, что оправдано трудностями его обработки, повышающими уровень производственных расходов. Стоит отметить, что поклонникам вольфрамовых колец, проживающих в странах СНГ, заметно повезло. В магазинах США цены на аналогичные модели на порядок выше.

Вольфрамовое кольцоТитановое кольцоКольцо из тистенаКольцо из стали 316L
Самый дорогостоящий вариантДешевле вольфрамовых, но дороже стальных колецДешевле вольфрамовых, но дороже стальных колецСамый доступный вариант

Титановые и тистеновые кольца среди нашей четверки — в средней ценовой категории. Дешевле вольфрамовых, но незначительно.

Кольца из карбида вольфрама

Изменение цвета со временем

Если кольцо начало темнеть или проявлять признаки ржавчины, — это украшение посредственного качества. Кольца из вольфрама, титана, тистена и нержавеющей стали (без цветного покрытия) не меняют первоначальный оттенок, не боятся воздействия ультрафиолета, воды (даже морской), устойчивы к коррозии, не окисляются при взаимодействии с кожей (в отличие от некоторых украшений из серебра).

Вольфрамовое кольцоТитановое кольцоКольцо из тистенаКольцо из стали 316L
Не меняют цвет, не темнеют, не тускнеют, не подвержены ржавчине.

Изменение цвета вольфрамового кольца, как и моделей из тистена или титана — признак повышенного содержания примесей в металлическом сплаве. Равно как и потемнение стального кольца — факт того, что его состав не соответствует зарекомендовавшей себя марке стали 316L.

Мифы о титане

Несколько мифов о титане

Отвечаю на самые распространённные высказывания-заблуждения относительно титата и изделий из него.

1. Титан — самый прочный и твердый материал. Ничего подобного, самый прочный и твердый материал в мире — алмаз. Из распространенных жёстких материалов — очень твёрд карбид вольфрама и многие вольфрамо-молибдено-содержащие сплавы. Это — холодные и тяжелые материалы, практически не поддаются мехобработке точением и фрезерованием и для них применяются ещё более сложные и современные технологии обработки. Собственно говоря, подавляющее большинство самого крепкого металлорежущего инструмента изготавливается из разновидностей комбинаций вольфрама с другими твёрдыми элементами, в том числе инструмента для обработки титана. Вольфрамосодержащие сплавы относятся к твердосплавным материалам. Для изготовления ювелирки практически не применяются, лишь изредка, т.к. для изготовления сложных изделий из вольфрамосодержащих материалов требуются слишком огромные производственные мощности, оправданные только в машиностроении и металлопроизводстве, где такая ювелирка считается не слишком крутым бонусом к основному виду деятельности. Ниже — схема замера твёрдости интендером твердомера, в различных единицах.

2. Титан не царапается. Царапается, еще как. Правда, различия в царапучести марок — достаточно выраженные и заметны даже простым глазом. На этот параметр влияет химический состав сплава и тип пост-обработки заготовки. Титаны топовых марок, изделия из которых служат во всей своей красе долго, стоят дорого и достать их чрезвычайно трудно. А дешевые марки лежат в продаже на любом складе металлобазы и стоят копейки, но изделия из них выходят и дешевые, но качеством блистать не будут. Однако, стоит отметить, что драгоценные металлы царапаются сильнее минимум вдвое, чем самая дешманская марка титана. Какой-то тип титанового сплава поцарапать легко, какой-то сложнее, какой-то ещё сложнее. В любом случае те, кто утверждают, что титан не царапается — врут. Однако, для улучшения твёрдости поверхности можно наносить на изделия спецпокрытия, которые значительно повысят износостойкость. Картинка «зацарапанной поверхности» прилагается.

3. Титан абсолютно биосовместим. Почти правда. Однако, всего лишь почти. Существует несколько био-несовместимых (точнее, аллергенных) марок, содержащие вредные примеси (но эти марки достаточно редки и врядли мастеру попадутся именно они, но чем чёрт не шутит), также подобные примеси, вызывающие аллергию, некрозы или как минимум, неприятные ощущения могут встречаться и в дешевых марках из-за заниженного контроля качества состава на производстве («Зачем ведь, спрашивается, проверять эти образцы на биосовместимость, заморачиваться с идеальной очисткой, когда мы собираемся делать из них корпус для термостата космической станции, который к тому же будет находиться снаружи корабля?»). Поэтому перед изготовлением ювелирки и бижутерии порядочный мастер-ювелир всегда отнесёт образец материала на хим.анализ, и только потом предложит клиенту. Ниже- красивая картинка зубного импланта.

4. Изделия из титана должны стоить дешево, ведь титан — очень дешевый материал. Самое распространённое заблуждение! Титан по сравннию с драгоценными металлами, конечно, стоит недорого, однако:

а) Есть очень большие проблемы в приобретении хороших марок в небольшом количестве, т.к. такой титан продаётся только большими промышленными партиями, а то и вообще не продаётся — дай-то Бог, чтобы вы смогли купить какой-нибудь обрезок из остатков «с барского стола» космической и военной промышленности, авось и повезёт. Самый дорогой титан в мире стоит около 1500 долларов за килограмм, самый дешёвый — около 1500 рублей за килограмм (по данным на 2019 год)

б) Самую большую часть стоимости изделий составляет именно обработка титана, так как она требует наличия уникального дорогостоящего инструмента и большого количества времени, а время — ресурс невосполняемый. Тем более, чем лучше титан, тем дороже инструмент и больше времени уходит на изготовление при соблюдении технологии изготовления изделий. Чтобы сделать качественно, с соблюдением всех допусков и параметров, технологию нарушать нельзя, иначе — брак и впустую потраченный материал. Ведь можно сделать хорошо, и тогда, изделие никак не будет дешёвым, а можно сделать как попало, без претензий на точность, ну или чтобы только создать иллюзию качества. А закрепка камней в титан — отдельная статья геморроя мастера, как выяснилось, разные марки титана требуют разного подхода к закрепке различных вставок, всё не так просто с ним — капризен, пружинит, и требует не совсем ювелирного (а более крутого) и дорогого инструмента при вставке и закрепке. Ниже — видео захватывающей работы пятикоординатного токарно-фрезерного станка — это одна из топовых технологий обработки металла, в том числе и титана. Использование подобных технологий для изготовления ювелирных изделий ну никак не может стоить дёшево. Смотрите.

Запомните, в производстве есть три волшебных слова, три составляющие, позволяющие комбинировать друг друга в различных позициях, однако всегда, всегда одно из слов будет лишним. Это «быстро», «качественно» и «недорого».

5. Чистый титан лучше всего. Смотря для каких целей и задач. Относительно чистый титан российского и зарубежного реестра стоит дёшево, однако обладает прочностью и твердостью немногим выше золота и серебра, а низкий уровень этих параметров даст зацарапать идеально выведенную поверхность в течении первого дня эксплуатации. Если уж сильные претензии к чистоте материала и предъявляются, то существуют иодидный и аффинированные титаны, однако вы не обрадуетесь цене на них. Ну, а самый распространённый относительно чистый и «простенький» титан применяется, в основном для удешевления бижутерной продукциии, не претендующей на качество поверхности, при создании очень сложных геометрических форм, или в случае использования его в технологии литья или какой-либо другой, не слишком дорогостоящей технологии обработки.

Касательно преимуществ и уникальности титановых сплавов, то стоит однозначно отметить их стойкость к коррозии (какие-то больше, какие-то меньше, но в бьтовых средах титан, как правило, не корродирует), при их лёгкости, высокой прочности, относительно высокой, а иногда и очень высокой твердости и практически абсолютной биосовместимости (см. выше). Титан не темнеет, не тускнеет со временем, не окисляется в агрессивных моющих химикалиях, а хорошо изготовленные изделия из качественного титана выглядят великолепно, некоторые из них — действительно плохо царапаются и долго служат своим превосходным внешним видом.

На каком кольце можно сделать гравировку

Кольцо из стали

Выгравировать надпись можно на кольце из любого металла — стали, титана, тистена и даже карбида вольфрама. В большинстве случаев за нанесение надписей на самые твердые, плохо поддающиеся механической обработке материалы берутся салоны, в которых предлагают услуги лазерной гравировки на нержавеющей стали.

Вольфрамовые кольцаТитановые кольцаКольца из тистенаКольца из стали 316L
Все кольца поддаются лазерной гравировке.

Гипоаллергенные свойства

Причиной аллергии может стать практически любое металлическое украшение. Все зависит от состава сплава и индивидуальной физиологии. Основы сплавов (вольфрам, титан, золото и др.) в большинстве своем — гипоаллергенные. Виновниками негативных реакций становятся примеси и добавки. Они присутствуют в большом числе ювелирных сплавов из платины, серебра, золота, равно как и в составе карбида вольфрама, тистена, стали 316L и даже титана (за исключением титана марки ASTM-F136, из которого создаются украшения для первичного пирсинга, медицинские импланты).

Если вы уже сталкивались с аллергией на никель, хром, кобальт или другие металлы-добавки, исключать возможность повторного ее появление нельзя. Подходить к выбору украшений придется максимально тщательно и, возможно, некоторые виды современной бижутерии для вас окажутся под запретом. В остальных случаях кольца из альтернативных металлов великолепно зарекомендовали себя. Жалобы клиентов на негативные реакции, связанные с моделями из стали 316L, вольфрама, титана и тистена, в нашем магазине являются редкостью.

Проверка на гальваническую реакцию

Для проведения этого теста потребуется источник постоянного тока с напряжением около 12 В. Это может быть автомобильный аккумулятор или преобразующий трансформатор. Соедините через провод плюс батареи с исследуемым образцом, а минус с металлическим стержнем, на конце которого намотана вата, марля или кусок хлопчатобумажной ткани. Намочите вату слабым раствором соляной кислоты или обычной кока-колой.

Если это титан, то при прикосновении к металлу его поверхность будет окрашиваться в результате образования оксидной пленки. Цветовой оттенок зависит от величины напряжения, концентрации кислоты в растворе и времени воздействия. Нержавеющие сплавы и алюминий данной реакции не подвержены.

О других особенностях

Повышенная твердость карбида вольфрама и тистена наделяет кольца завидными преимуществами, но делает их хрупкими. Не в том смысле, что они, как хрусталь, разбиваются на сотни мелких осколков. Но при сильном ударе тяжелым предметом или падении с высоты (на асфальт, керамическую плитку, бетон) кольцо может треснуть или лопнуть, расколоться на две части. В длинной цепи достоинств это, пожалуй, их единственное слабое звено.

Стальные и титановые кольца такой особенности лишены. В случае падения останутся целыми, худший исход — несколько царапин.

О кольцах из вольфрама, титана, тистена и стали с покрытиями

Вольфрамовые кольца с IP покрытием

Цветные покрытия не настолько прочные, как сам карбид вольфрама, титан, тистен или сталь. Поэтому с синими, черными, золотистыми и другими цветными кольцами рекомендуется обращаться осторожнее, оберегая от воздействий бытовой химии и других агрессивных веществ, соседства с твердыми предметами. Как увеличить срок службы разноцветных моделей — читайте в статье об особенностях колец с IP и PVD покрытием.

Источник https://www.drive2.ru/l/524835383918200353/

Источник https://basetop.ru/samye-prochnye-metally-v-mire-top-10/

Источник https://master-pmg.ru/oborudovanie/prochnost-titana-i-stali.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: