Как работают солнечные батареи?

 

Как работают солнечные батареи?

Солнечная энергия удивительна. В среднем на каждый квадратный метр поверхности Земли поступает 164 Вт солнечной энергии (цифру мы объясним более подробно ниже). Другими словами, вы могли бы поставить действительно мощную (150 Вт) настольную лампу на каждый квадратный метр поверхности Земли и осветить всю планету энергией Солнца! Или, другими словами, если бы мы покрыли всего один процент пустыни Сахара солнечными батареями, мы могли бы генерировать достаточно электричества, чтобы питать весь мир. Это хорошо в солнечной энергии: ее очень много — гораздо больше, чем мы могли бы когда-либо использовать.

Но есть и обратная сторона. Энергия, которую посылает Солнце, прибывает на Землю как смесь света и тепла . И то, и другое невероятно важно: свет заставляет растения расти, обеспечивая нас пищей, в то время как тепло сохраняет нас достаточно теплыми, чтобы выжить, — но мы не можем использовать ни солнечный свет, ни тепло непосредственно для управления телевизором или автомобилем. Нам нужно найти какой-то способ преобразования солнечной энергии в другие виды энергии, которые мы могли бы использовать более легко, например, электричество. И это именно то, что делают солнечные элементы.

Чтобы узнать, как работают солнечные панели, вам нужно понять, как они сделаны. Многие солнечные панели используют кремний, один из самых распространенных элементов планеты. Но поскольку создание кристаллов кремния подходящего качества сложно и дорого, домашние солнечные системы обычно строятся из аналогичных, но менее дорогих материалов, таких как медь, индий, галлий и селенид (CIGS). Они не так эффективны, как высококачественный кремний, но все же обеспечивают достаточную мощность при разумных затратах.

Кремний — это материал, из которого сделаны транзисторы (крошечные переключатели) в микросхемах, и солнечные элементы работают аналогичным образом. Кремний — это материал, называемый полупроводником . Некоторые материалы, особенно металлы , позволяют электричеству проходить через них очень легко; они называются проводниками. Другие материалы, такие как пластик и дерево , вообще не позволяют электричеству течь через них; они называются изоляторами. Полупроводники, такие как кремний, не являются ни проводниками, ни изоляторами: они обычно не проводят электричество, но при определенных обстоятельствах мы можем заставить их это делать.

Солнечный элемент представляет собой сэндвич из двух разных слоев кремния, которые были специально обработаны или легированы, чтобы они могли электричеством проходить через них определенным образом. Нижний слой легирован, поэтому в нем слишком мало электронов. Он называется кремнием p-типа или положительного типа (потому что электроны заряжены отрицательно, и их в этом слое слишком мало). Верхний слой легирован противоположным образом, чтобы дать ему немного слишком много электронов. Это называется кремнием n-типа или отрицательного типа.

Когда мы помещаем слой кремния n-типа на слой кремния p-типа, на стыке двух материалов создается барьер (важнейшая граница, где встречаются два вида кремния). Никакие электроны не могут пересечь барьер, поэтому, даже если мы подключим этот кремниевый бутерброд к фонарику, ток не будет течь: лампочка не загорится. Но если мы проливаем свет на бутерброд, происходит нечто замечательное. Мы можем думать о свете как о потоке энергичных «легких частиц», называемых фотонами., Когда фотоны попадают в наш сэндвич, они отдают свою энергию атомам в кремнии. Поступающая энергия выбивает электроны из нижнего слоя p-типа, поэтому они перепрыгивают через барьер к слою n-типа выше и текут по кругу. Чем больше света светит, тем больше электронов подпрыгивает и течет больше тока.

Это то, что мы подразумеваем под фотоэлектрическим напряжением, создающим свет, и это один из видов того, что ученые называют фотоэлектрическим эффектом .

Видимый солнечный свет состоит из невидимых частиц, называемых фотонами. У них есть энергия, но нулевая масса покоя. Когда фотоны сталкиваются с другими частицами, их энергия преобразуется в другие формы в зависимости от вида атомов, к которым они прикасаются. Большинство столкновений создают только тепло.

Но электричество также может быть произведено, когда фотоны делают электроны в атомах настолько возбужденными, что они отрываются и перемещаются свободно. Кремниевые электроны n-типа ищут электроны в кремнии p-типа, чтобы заменить отсутствующие электроны и поток между двумя полученными типами.

Замечательные свойства полупроводников, таких как кремний, позволяют поддерживать электрический дисбаланс. Это означает постоянную подачу электричества, пока фотоны попадают на солнечные панели. Ток собирается по проводам и распространяется по всей системе.

Солнечный элемент представляет собой сэндвич из кремния n-типа (синий) и кремния p-типа (красный). Он генерирует электричество, используя солнечный свет, чтобы электроны перепрыгивали через соединение между различными ароматами кремния:

  • Когда солнечный свет падает на клетку, фотоны (легкие частицы) бомбардируют верхнюю поверхность.
  • Фотоны (желтые капли) несут свою энергию через клетку.
  • Фотоны отдают свою энергию электронам (зеленым пятнам) в нижнем слое p-типа.
  • Электроны используют эту энергию, чтобы перепрыгнуть через барьер в верхний слой n-типа и уйти в контур.
  • Обтекание цепи электронами заставляет лампу загореться.

Основное правило физики, называемое законом сохранения энергии, гласит, что мы не можем волшебным образом создавать энергию или заставить ее исчезнуть в воздухе; все, что мы можем сделать, это преобразовать его из одной формы в другую. Это означает, что солнечный элемент не может производить больше электрической энергии, чем он получает каждую секунду в качестве света. На практике, как мы вскоре увидим, большинство клеток преобразует около 10–20 процентов энергии, которую они получают, в электричество. Типичный однопереходный кремниевый солнечный элемент имеет теоретический максимальный КПД около 30 процентов, известный как предел Шокли-Кейссера, Это в основном потому, что солнечный свет содержит широкую смесь фотонов с различными длинами волн и энергией, и любой однопереходный солнечный элемент будет оптимизирован для захвата фотонов только в пределах определенной полосы частот, тратя впустую остальное. Некоторые из фотонов, попадающих на солнечный элемент, не имеют достаточно энергии, чтобы выбить электроны, поэтому они эффективно тратятся впустую, в то время как у некоторых слишком много энергии, а избыток также теряется. Самые лучшие, передовые лабораторные ячейки могут управлять 46-процентной эффективностью в абсолютно идеальных условиях, используя множество соединений для захвата фотонов с различной энергией.

  • Тень. Затененные солнечные панели не будут вырабатывать столько же энергии, сколько панели на полноценном солнце. Если ваша крыша лишена солнечного света, затенена необрезанными деревьями или зданиями, солнечная энергия может оказаться не лучшим выбором.
  • Сезонность. Как и погода, выработка солнечной энергии меняется день ото дня и месяц за месяцем. Облачный зимний день не будет таким же продуктивным, как солнечный летний. Но важно сосредоточиться на круглогодичной картине. Например, снег иногда может отражать свет и улучшать фотоэлектрические характеристики. Таким образом, в действительности холодный месяц станет солнечным антагонистом, только если слякоть не покроет панели.
  • Наклон. Солнечные панели должны иметь хороший наклон. Направление, в котором стоит ваш дом, его расположение, и даже уклон крыши, оказывают существенное влияние на эффективность работы солнечной солнечной системы. В идеале солнечные панели должны находиться под тем же углом, что и широта, на которой они установлены. Отклонения от 30 до 45 градусов обычно работают хорошо в большинстве сценариев.
  • Азимут. Угол солнечного азимута — это направление компаса, откуда идет солнечный свет. В полдень солнечный свет исходит с юга в северном полушарии и с севера в южном полушарии. Неправильный угол азимута может снизить эффективность солнечной панели дома до 35%. Азимут нуля (обращенный к экватору) обычно является лучшим выбором.
Читайте также  Альтернативный источник энергии — солнечные панели.

Реальные бытовые солнечные панели могут достичь эффективности около 15 процентов, дать процентное соотношение здесь или там, и это вряд ли станет намного лучше. Солнечные элементы первого поколения с однопереходными солнечными батареями не будут приближаться к 30-процентному КПД ограничения Шокли-Кейссера, не говоря уже о лабораторных показателях в 46 процентов. Все виды неприятных реальных факторов будут влиять на номинальную эффективность, включая конструкцию панелей, то, как они расположены и под каким углом находятся, попадают ли они в тень, в какой чистоте вы их держите, насколько они горячие (повышение температуры имеют тенденцию снижать их эффективность), и вентилируются ли они (позволяя воздуху циркулировать внизу), чтобы они оставались прохладными.

Большинство солнечных панелей, которые вы видите сегодня на крышах домов, по сути, представляют собой просто кремниевые бутерброды, специально обработанные («легированные»), чтобы сделать их лучшими электрическими проводниками. Ученые называют эти классические солнечные элементы первым поколением, в значительной степени отличая их от двух разных, более современных технологий, известных как второе и третье поколение. Так в чем же разница?

Около 90 процентов солнечных панелей в мире изготовлены из пластин кристаллического кремния (сокращенно c-Si), нарезанных из крупных слитков, которые выращиваются в суперчистых лабораториях, процесс которых может занять до месяца. Слитки либо принимают форму монокристаллов (монокристаллический или моно-Si), либо содержат несколько кристаллов (поликристаллический, мульти-Si или поли-c-Si). Солнечные элементы первого поколения работают так, как мы показали выше: они используют одно простое соединение между кремниевыми слоями n-типа и p-типа, которые вырезаны из отдельных слитков. Таким образом, слиток n-типа можно получить, нагревая куски кремния с небольшим количеством фосфора, сурьмы или мышьяка в качестве легирующей добавки, в то время как слиток р-типа будет использовать бор в качестве легирующей примеси. Ломтики кремния n-типа и p-типа затем сливаются для соединения. Добавлены еще несколько наворотов (например, антиотражающее покрытие, которое улучшает поглощение света и придает фотоэлектрическим элементам их характерный синий цвет, защитное стекло на передней панели и пластиковая подложка, а также металлические соединения, позволяющие подключить элемент к цепи), но простой pn-переход — это сущность большинства солнечных панелей.

Классические солнечные элементы представляют собой относительно тонкие пластины — обычно их доля составляет миллиметровую глубину (около 200 микрометров, 200 микрон или около того). Но они являются абсолютными плитами по сравнению с элементами второго поколения, широко известными как тонкопленочные солнечные элементы(TPSC) или тонкопленочные фотоэлектрические элементы (TFPV), которые снова примерно в 100 раз тоньше (несколько микрометров или миллионные доли метра глубиной). Хотя большинство из них все еще сделаны из кремния (другая форма, известная как аморфный кремний, a-Si, в которой атомы расположены случайным образом, а не точно упорядочены в правильной кристаллической структуре), некоторые сделаны из других материалов, в частности, теллурида кадмия (Cd -Te) и диселенид меди-индия-галлия (CIGS). Поскольку они чрезвычайно тонкие, легкие и гибкие, солнечные элементы второго поколения можно ламинировать на окнах, окнах в крыше, черепице и всех видах «подложек» (материалов подложки), включая металлы , стекло и полимеры (пластики). То, что элементы второго поколения приобретают в гибкости, они жертвуют эффективностью: классические солнечные элементы первого поколения по-прежнему превосходят их. Таким образом, в то время как первоклассные ячейки первого поколения могут достигать эффективности 15–20 процентов, аморфный кремний изо всех сил пытается достичь более 7 процентов, а лучшие тонкопленочные ячейки Cd-Te справляются только с 11 процентами, а ячейки CIGS не лучше чем 7–12 процентов. Это одна из причин, почему, несмотря на их практические преимущества, элементы второго поколения до сих пор оказывали относительно небольшое влияние на солнечный рынок.

Новейшие технологии сочетают в себе лучшие черты ячеек первого и второго поколения. Как и клетки первого поколения, они обещают относительно высокую эффективность (30 процентов и более). Как и элементы второго поколения, они, скорее всего, будут изготовлены из материалов, отличных от «простого» кремния, таких как аморфный кремний, органические полимеры (создание органических фотоэлектрических элементов), кристаллы перовскита, и имеют несколько соединений (из нескольких слоев) различных полупроводниковых материалов. В идеале это сделало бы их дешевле, эффективнее и практичнее, чем клетки первого или второго поколения.

В теории огромное количество. Давайте на время забудем солнечные элементы и просто рассмотрим чистый солнечный свет. До 1000 Вт необработанной солнечной энергии попадает на каждый квадратный метр Земли, направленной прямо с Солнца (это теоретическая мощность прямого солнечного света в полдень в безоблачный день — солнечные лучи излучают перпендикулярно поверхности Земли и дают максимальное освещение или инсоляцию), как это технически известно. На практике, после того, как мы скорректировали наклон планеты и время суток, лучшее, что мы можем получить, это, возможно, 100–250 Вт на квадратный метр в типичных северных широтах (даже в безоблачный день). Это составляет примерно 2–6 кВт/ч в день (в зависимости от того, находитесь ли вы в северном регионе, например, в Канаде или Шотландии, или наоборот в южном полушарии, например, в Аризоне или Мексике). Умножение производства на целый год дает нам где-то между 700 и 2500 кВт/ч на квадратный метр (700–2500 единиц электроэнергии). Более жаркие регионы, очевидно, обладают гораздо большим солнечным потенциалом: например, на Ближнем Востоке ежегодно получается на 50–100 процентов больше солнечной энергии, чем в Европе.

Читайте также  Solar motion Конструктор-трансформер на солнечных батареях 6 в 1 KIT SOLAR - отзыв

К сожалению, типичные солнечные элементы эффективны только на 15 процентов, поэтому мы можем захватить только часть этой теоретической энергии. Вот почему солнечные панели должны быть такими большими: количество энергии, которую вы можете производить, очевидно, напрямую связано с тем, сколько места вы можете позволить себе покрыть панелями. Один солнечный элемент (примерно размером с компакт-диск) может генерировать около 3–4,5 Вт; типичный солнечный модуль, изготовленный из массива около 40 элементов (5 рядов по 8 элементов), может генерировать около 100–300 Вт; поэтому несколько солнечных панелей, каждая из которых состоит из 3–4 модулей, могут генерировать абсолютный максимум в несколько киловатт (вероятно, достаточно для удовлетворения пиковой потребности дома в электроэнергии).

Как работают солнечные батареи

Cолнце есть и будет всегда! Возможно, это слишком смелое заявление, но это действительно так. По крайней мере, с точки зрения человечества. Пусть оно и взорвется через сколько-то там миллионов лет, но к тому времени мы уже покинем эту планету или сами, или в виде кучки пепла, которую развеет в космосе очередной огромный камень, налетевший на наш голубой шарик. Именно из-за такой стабильности Солнца его можно и нужно использовать для получения энергии. Люди уже давно научились это делать и сейчас продолжают совершенствовать технологии солнечной энергетики. Но как же работают солнечные панели, батареи и вообще, как можно превратить свет в электричество внутри розетки?

solar panel 0main

Солнечные панели позволяют сделать электричество чуть ли не бесплатным.

Когда появились солнечные батареи

Солнечные батареи были изобретены достаточно давно. Впервые эффект преобразования света в электричество был обнаружен Александром Эдмоном Беккерелем в 1842 году. Для создания первых прототипов потребовалось почти сто лет.

В 1948 году, а именно 25 марта, итальянский фотохимик Джакомо Луиджи Чемичан смог сделать то, что мы теперь используем и развиваем. Спустя 10 лет в 1958 году технология впервые была опробована в космосе в качестве элемента питания американского спутника, названного ”Авангард-1”. Спутник был запущен 17 марта, а уже 15 мая того же года это достижение повторили в СССР (аппарат ”Спутник-3”). То есть технологи начала массово применяться в разных странах почти одновременно.

solar panel 018

Использование солнечных панелей в космосе — обычная практика.

Подобные конструкции применяются в космосе до сих пор, как важный источник энергии. А еще их используют на Земле для обеспечения энергией домов и даже целых городов. А еще их начали встраивать в гражданские электромобили для обеспечения большей автономности.

Вообще, важность подобных элементов невозможно переоценить. Только так можно добиться получения энергии в любой точке планеты. Гидроэнергетика, атомные станции, ветряки и тому подобные системы могут быть размещены только в определенных местах, стоят очень дорого или требуют соответствующей инфраструктуры. И только солнечные панели позволяют построить дом в пустыне и электрифицировать его. За относительно небольшие деньги. На «ветряк» их точно не хватит.

Как работают солнечные панели

Стоит немного уточнить, что понятие ”солнечная батарея” не очень правильное. Точнее правильное, но не имеющее отношение к тем системам питания, о которых мы говорим. Батарея там обычная, но получает энергию от солнечных панелей, которые преобразуют в электричество свет солнца.

В основе солнечной панели лежат фотоэлектрические ячейки, которые помещены внутрь общей рамы. Для создания таких ячеек чаще всего используется кремний, но возможно использование и других полупроводников.

Энергия вырабатывается в тот момент, когда на полупроводник попадают солнечные лучи и нагревают его. В результате этого внутри полупроводника высвобождаются электроны. Под действием электрического поля электроны начинают двигаться более упорядоченно, что и приводит к появлению электрического тока.

solar panel 02

Примерно так выглядит солнечная панель.

Для того, чтобы получить электричество, надо подключить контакты к обеим сторонам фотоэлемента. В результате этого он начнет питать электричеством подключенный потребитель или просто заряжать батарею, которая потом будет отдавать электричество в сеть, когда это понадобится.

Основной упор на кремний делается из-за его кристаллических особенностей. Впрочем, в чистом виде кремний сам по себе является плохим проводником и для изменения свойств к нему делается крайне малое количество примесей, которые улучшают его проводимость. В основном в число примесей входит фосфор.

Как полупроводники вырабатывают электричество?

Полупроводник является материалом, в атомах которого либо есть лишние электроны (n-тип), либо их не хватает (p-тип). То есть полупроводник состоит из двух слоев с разной проводимостью.

В качестве катода в такой схеме используется n-слой. Анодом является p-слой. То есть электроны из первого слоя могут переходить во второй. Переход происходит за счет выбивания электронов фотонами света. Один фотон выбивает один электрон. После этого они, проходя через аккумулятор, попадают обратно в n-слой и все идет по кругу.

solar panel 03

Когда энергия выработана, все начинается по кругу, а свет всегда горит.

В современных солнечных панелях в качестве полупроводника используется кремний, а начиналось все с селена. Селен показал крайне низкий КПД — не более одного процента — и ему сразу стали искать замену. Сейчас кремний в целом удовлетворяет требования промышленности, но есть у него и один существенный минус.

Читайте также  Как работают солнечные батареи: принцип, устройство, материалы

Обработка и очистка кремния для приведения его к тому виду, в котором его можно будет использовать, является достаточно затратной процедурой. Чтобы снизить стоимость производства, проводят эксперименты с его альтернативами — медью, индием, галием и кадмием.

Эффективность солнечных панелей

Есть у кремния еще один минус, который не так существенен, как стоимость, но с которым тоже надо бороться. Дело в том, что кремний очень сильно отражает свет и из-за этого элемент вырабатывает меньше электричества.

solar panel 017

Даже повесив столько панелей, все равно надо обеспечивать их нормальную работу. В том числе бороться с отражением света.

Для того, чтобы уменьшить такие потери, фотоэлементы покрывают специальным антибликовым покрытием. Кроме такого слоя, надо использовать и защитный слой, который позволит элементу быть более долговечным и противостоять не только дождю и пыли, но даже падающим веткам небольшого размера. При установке на крыше дома это очень актуально.

solar panel 04

Солнце -сила! Ее надо использовать!

Несмотря на общую удовлетворенность технологией и постоянную борьбу за улучшение показателей, современным солнечным панелям все равно есть куда стремиться. На данный момент массово производятся панели, которые перерабатывают до 20 процентов попадающего на них света. Но есть и более современные панели, которые пока ”доводятся до ума” — они могут перерабатывать до 40 процентов света.

А вообще, солнечная энергетика это круто! И помните, даже при таком «пАлящем» солнце система будет работать.

Как работают солнечные батареи

солнечные батареи

©Wikipedia

Когда-то фотоэлементы использовались почти исключительно в космосе, например, в качестве основного источника энергии спутников. С тех пор солнечные батареи все больше входят в нашу жизнь: ими покрывают крыши домов и машин, используют в наручных часах и даже в темных очках.

Но как же функционируют солнечные батареи? Каким образом удается преобразовывать энергию солнечных лучей в электричество?

Основные принципы

Солнечные панели состоят из фотоэлектрических ячеек, запакованных в общую рамку. Каждая из них сделана из полупроводникового материала, например, кремния, который чаще всего используется в солнечных батареях.

Когда лучи падают на полупроводник, тот нагревается, частично поглощая их энергию. Приток энергии высвобождает электроны внутри полупроводника. К фотоэлементу прилагается электрическое поле, которое направляет свободные электроны, заставляя их двигаться в определенном направлении. Этот поток электронов и образует электрический ток.

Если приложить металлические контакты к верху и к низу фотоэлемента, можно направить полученный ток по проводам и использовать его для работы различных устройств. Сила тока вместе с напряжением ячейки определяют мощность электроэнергии, производимой фотоэлементом.

Depositphotos 22884686 m

Кремниевые полупроводники

Рассмотрим процесс высвобождения электронов на примере кремния. Атом кремния имеет 14 электронов в трех оболочках. Первые две оболочки полностью заполнены двумя и восемью электронами соответственно. Третья же оболочка наполовину пуста – в ней всего 4 электрона.

Благодаря этому кремний имеет кристаллическую форму; пытаясь заполнить пустоты в третьей оболочке, атомы кремния пытаются «делиться» электронами с соседями. Однако кристалл кремния в чистом виде – плохой проводник, поскольку практически все его электроны крепко сидят в кристаллической решетке.

Поэтому в солнечных батареях используют не чистый кремний, а кристаллы с небольшими примесями, т. е. в кремний вводятся атомы других веществ. На миллион атомов кремния приходится всего один атом, например, атом фосфора.

У фосфора пять электронов во внешней оболочке. Четыре из них образуют кристаллические связи с близлежащими атомами кремния, однако пятый электрон фактически остается «висеть» в пространстве, без всяких связей с соседними атомами.

Когда на кремний попадают солнечные лучи, его электроны получают дополнительную энергию, которой оказывается достаточно, чтобы оторвать их от соответствующих атомов. В результате на их месте остаются «дырки». Освободившиеся же электроны блуждают по кристаллической решетке как носители электрического тока. Встретив очередную «дырку», они заполняют ее.

Однако в чистом кремнии таких свободных электронов слишком мало из-за крепких связей атомов в кристаллической решетке. Совсем другое дело – кремний с примесью фосфора. Для высвобождения несвязанных электронов в атомах фосфора требуется приложить значительно меньшее количество энергии.

Большая часть таких электронов становится свободными носителями, которые можно эффективно направлять и использовать для получения электричества. Процесс добавления примесей для улучшения химических и физических свойств вещества называется легированием.

Кремний, легированный атомами фосфора, становится электронным полупроводником n-типа (от слова «negative», из-за отрицательного заряда электронов).

Кремний также легируют бором, у которого всего три электрона во внешней оболочке. В результате получается полупроводник p-типа (от «positive»), в котором возникают свободные положительно заряженные «дырки».

Устройство солнечной батареи

Что же произойдет, если соединить полупроводник n-типа с полупроводником p-типа? В первом из них образовалось множество свободных электронов, а во втором – много дырок. Электроны стремятся как можно быстрее заполнить дырки, но если это произойдет, оба полупроводника станут электрически нейтральными.

Вместо этого при проникновении свободных электронов в полупроводник p-типа, область на стыке обоих веществ заряжается, образуя барьер, перейти который не так просто. На границе p-n перехода возникает электрическое поле.

Энергии каждого фотона солнечного света хватает обычно на высвобождение одного электрона, а значит и на образование одной лишней дырки. Если это происходит вблизи p-n перехода, электрическое поле посылает свободный электрон на n-сторону, а дырку – на p-сторону.

Таким образом, равновесие нарушается еще больше, и если приложить к системе внешнее электрическое поле, свободные электроны потекут на p-сторону, чтобы заполнить дырки, создавая электрический ток.

К сожалению, кремний довольно хорошо отражает свет, а значит, значительная часть фотонов пропадает втуне. Чтобы уменьшить потери, фотоэлементы покрывают антибликовым покрытием. Наконец, чтобы защитить солнечную батарею от дождя и ветра, ее также принято покрывать стеклом.

wallpaper no1 16 10

Коэффициент полезного действия современных солнечных батарей не слишком высок. Большинство из них эффективно перерабатывают от 12 до 18 процентов попадающего на них солнечного света. Лучшие образцы перешли 40-процентный барьер КПД.

Источник https://vc.ru/u/444403-ecosun/104929-kak-rabotayut-solnechnye-batarei

Источник https://hi-news.ru/technology/kak-rabotayut-solnechnye-batarei.html

Источник https://naked-science.ru/article/nakedscience/how-solar-cells-work

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: