Контроллеры для солнечных батарей

 

Для чего нужны и какие бывают контроллеры заряда солнечной батареи?

Среди современных гелиосистем большую популярность приобрели те, что работают автономно и не подключаются к электрической сети. То есть, они функционируют в замкнутом режиме. Например, в рамках энергоснабжения одного дома. В состав подобных систем входят солнечные панели (и/или ветряной генератор), контроллер заряда, инвертор, реле, аккумулятор, провода. Контроллер в этой схеме является ключевым элементом. В этой статье мы поговорим о том, для чего нужен контроллер солнечных батарей, какие бывают разновидности и как выбрать такое устройство.

Для чего нужен солнечный контроллер?

Как уже было сказано, контроллер заряда является ключевым элементом гелиосистемы. Это электронное устройство, работающее на базе чипа, который контролирует работу системы и управляет зарядом аккумулятора. Контроллеры для солнечных батарей не допускают полной разрядки аккумулятора и его излишнего заряда. Когда заряд аккумуляторной батареи находится на максимальном уровне, то величина тока от фотоэлементов уменьшается. В результате подаётся ток, необходимый для компенсации саморазряда. Если аккумулятор чрезмерно разряжен, то контроллер отключит от него нагрузку.

Итак, можно обобщить функции, которые выполняет контроллер солнечных батарей:

  • многостадийный заряд аккумулятора;
  • отключение зарядки или нагрузки при максимальном заряде или разряде, соответственно;
  • включение нагрузки, когда заряд батареи восстановлен;
  • автоматическое включение тока с фотоэлементов для зарядки аккумулятора.

Контроллер заряда солнечных батарей

Контроллер заряда солнечных батарей

Параметры выбора

На что же следует обратить внимание при выборе контроллера для солнечных батарей? Основные характеристики изложены ниже:

  • Входное напряжение. Максимальное напряжение, указанное в техническом паспорте, должно быть на 20 процентов выше напряжения «холостого хода» батареи фотоэлементов. Это требование появилось из-за того, что производители часто ставят завышенные параметры контроллеров в спецификациях. Кроме того, при высокой солнечной активности напряжение солнечных модулей может быть выше, чем указано в документации;
  • Номинальный ток. Для контроллера типа PWM номинал по току должен на 10 процентов превышать ток короткого замыкания батареи. Контроллер типа MPPT нужно подбирать по мощности. Его мощность должен быть равна или выше напряжения гелиосистемы умноженного на тока регулятора на выходе. Напряжение системы берётся для разряженных аккумуляторов. В период высокой солнечной активностью к полученной мощности следует прибавить 20 процентов про запас.

Не нужно экономить на этом запасе. Ведь экономия может плачевно сказаться в период высокой солнечной инсоляции. Система может выйти из строя и убытки будут гораздо больше.
Вернуться к содержанию

Виды контроллеров

Контроллеры On/Off

Эти модели являются самыми простыми из всего класса контроллеров заряда для солнечных батарей.

Контроллер заряда On/Off для гелиосистем

Контроллер заряда On/Off для гелиосистем

Модели типа On/Off предназначены для того, чтобы отключать заряд аккумулятора, когда достигается верхний предел напряжения. Обычно это 14,4 вольта. В результате предотвращается перегрев и излишний заряд.

С помощью контроллеров On/Off не получится обеспечить полную зарядку аккумуляторной батареи. Ведь здесь отключение происходит в том момент, когда достигнут максимальный ток. А процесс зарядки до полной ёмкости ещё необходимо поддерживать несколько часов. Уровень заряда в момент отключения находится где-то 70 процентов от номинальной ёмкости. Естественно, что это негативно отражается на состоянии аккумулятора и снижает срок его эксплуатации.
Вернуться к содержанию

Контроллеры PWM

В поисках решения неполной зарядки аккумулятора в системе с устройствами On/Off были разработаны блоки управления, основанные на принципе широтно-импульсной модуляции (сокращённо ШИМ) заряжающего тока. Смысл работы такого контроллера заключается в том, что он понижает заряжающий ток, когда достигается предельное значение напряжения. При таком подходе заряд аккумулятора доходит практически до 100 процентов. Эффективность процесса увеличивается до 30 процентов.

Контроллер заряда PWM

Контроллер заряда PWM

Есть модели PWM, которые умеют в зависимости от температуры ОС регулировать ток. Это хорошо сказывается на состоянии аккумулятора, уменьшается нагрев, лучше принимается заряд. Процесс становится регулируемым в автоматическом режиме.

ШИМ контроллеры заряда для солнечных батарей специалисты рекомендуют применять в тех регионах, где наблюдается высокая активность солнечных лучей. Их часто можно встретить в гелиосистемах маленькой мощности (менее двух киловатт). Как правило, в них работают аккумуляторные батареи небольшой ёмкости.
Вернуться к содержанию

Читайте также  Самодельный солнечный коллектор

Регуляторы типа MPPT

Контроллеры заряда МРРТ сегодня являются самыми совершенными устройствами для регулирования процесса заряда аккумуляторной батареи в гелиосистемах. Эти модели увеличивают эффективность генерации электричества на одних и тех же солнечных батареях. Принцип работы устройств MPPT основан на определении точки максимального значения мощности.

Контроллер заряда MPPT

Контроллер заряда MPPT

MPPT в постоянном режиме следит за током и напряжением в системе. На основании этих данных микропроцессор подсчитывает оптимальное отношение параметров для того, чтобы достигнуть максимальной выработки по мощности. При регулировке напряжения и учитывается даже этап процесса зарядки. MPPT контроллеры солнечных батарей даже позволяют снимать большое напряжение с модулей, затем преобразовывая его в оптимальное. Под оптимальным понимается то, которое обеспечивает полную зарядку АКБ.

Если оценивать работу MPPT по сравнению с PWM, то эффективность функционирования гелиосистемы возрастёт от 20 до 35 процентов. К плюсам также стоит отнести возможность работы при затенении солнечной панели до 40 процентов. Благодаря возможности поддержания высокого значения напряжения на выходе контроллера можно использовать проводку небольшого сечения. А также можно поставить солнечные панели и блок на большее расстояние, чем в случае с PWM.
Вернуться к содержанию

Гибридные контроллеры заряда

В некоторых странах, например, США, Германии, Швеции, Дании значительную часть электроэнергии вырабатывают ветрогенераторы. В некоторых маленьких странах альтернативная энергетика занимает большую долю в энергосетях этих государств. В составе ветряных систем также работают устройства для управления процессом заряда. Если же электростанция представляет собой комбинированный вариант из ветрогенератора и солнечных батарей, то применяют гибридные контроллеры.

Гибридный контроллер

Эти устройства могут быть построены схеме МРРТ или PWM. Основное отличие заключается в том, что в них используются другие вольтамперные характеристики. В процессе работы ветряные генераторы дают очень неравномерную выработку электроэнергии. В результате на аккумуляторные батареи поступает неравномерная нагрузка, и они работают в стрессовом режиме. Задача гибридного контроллера заключается в сбросе избыточной энергии. Для этого, как правило, используются специальные тэны.
Вернуться к содержанию

Самодельные контроллеры

Люди, которые разбираются в электротехнике, часто сами собирают контроллеры заряда для ветрогенераторов и солнечных батарей. Функциональность подобных моделей часто уступает по эффективности и набору функций фабричным устройствам. Однако в небольших установках маленькой мощности самодельного контроллера вполне достаточно.

Самодельный контроллер заряда для гелиосистем

Самодельный контроллер заряда для гелиосистем

При создании контроллера заряда своими руками следует помнить о том, что суммарная мощность должна удовлетворять следующему условию: 1,2P ≤ I*U. I – это выходной ток контроллера, U – это напряжение при разряженной батарее.

Схем самодельных контроллеров существует довольно много. Их можно поискать на соответствующих форумах в сети. Здесь следует сказать лишь о некоторых общих требованиях к такому устройству:

  • Напряжение зарядки должно быть 13,8 вольта и меняется в зависимости номинального значения силы тока;
  • Напряжение, при котором происходит отключение заряда (11 вольт). Эта величина должна быть настраиваемой;
  • Напряжение, при котором включается заряд 12,5 вольта.

Так, что если вы решили собрать гелиосистему своими руками, то придётся заняться изготовлением контроллера заряда. Без него при эксплуатации солнечных батарей и ветрогенератров не обойтись.
Вернуться к содержанию

Некоторые особенности контроллеров заряда солнечных батарей

В заключение нужно сказать ещё о нескольких особенностях контроллеров заряда. В современных системах они имеют ряд защит для повышения надёжности работы. В таких устройствах могут быть реализованы следующие виды защиты:

  • От неправильного подключения полярности;
  • От коротких замыканий в нагрузке и на входе;
  • От молнии;
  • От перегрева;
  • От входных перенапряжений;
  • От разряда аккумулятора в ночное время.

Кроме того, в них устанавливаются всевозможные электронные предохранители. Чтобы облегчить эксплуатацию гелиосистем, контроллеры заряда имеют информационные дисплеи. На них отображается информация о состоянии аккумуляторной батареи и системы в целом. Здесь могут быть такие данные, как:

  • Степень заряда, напряжение АКБ;
  • Ток, отдаваемый фотоэлементами;
  • Ток для заряда батареи и в нагрузке;
  • Запасённые и отданные ампер-часы.

На дисплее может также выдаваться сообщение о понижении заряда, предупреждение об отключении питания в нагрузку.

Некоторые модели контроллеров для солнечных батарей имеют таймеры для активации ночного режима работы. Существуют сложные устройства, управляющие работой двух независимых батарей. В их названии обычно есть приставка Duo. Стоит также отметить модели, которые умеют сбрасывать лишнюю энергию на тэны.

Интересны модели, имеющие интерфейс для подключения к компьютеру. Так можно значительно расширить функционал наблюдения за гелиосистемой и управления ей.
Вернуться к содержанию

Читайте также  Солнечные панели

Опрос

Если статья оказалась для вас полезной, распространите ссылку на неё в социальных сетях. Этим вы поможете развитию сайта. Голосуйте в опросе ниже и оценивайте материал! Исправления и дополнения к статье оставляйте в комментариях.
Вернуться к содержанию

Контроллеры для солнечных батарей

Контроллеры для солнечных батарей

В современных солнечных электростанциях для передачи выработанной электроэнергии рабочим аккумуляторам применяются разные схемы подключения источников тока. Они используют не одинаковые алгоритмы, созданы на основе микропроцессорных технологий, называются контроллерами.

Как работают контроллеры заряда солнечных батарей

Электроэнергия, вырабатываемая солнечной батареей, может передаваться накопительным аккумуляторным батареям:

1. напрямую, без использования коммутационных приборов и регулирующих устройств,

2. через контроллер.

При первом способе электрический ток от источника пойдет к аккумуляторам и станет увеличивать напряжение на их клеммах. Вначале оно дойдет до определенного, предельного значения, зависящего от конструкции (типа) аккумуляторной батареи и окружающей температуры. Затем преодолеет рекомендуемый уровень.

На начальном этапе заряда схема работает нормально. А вот дальше начинаются крайне нежелательные процессы: продолжающееся поступление зарядного тока вызывает повышение напряжения сверх допустимых значений (порядка 14 В), возникает перезаряд с резким возрастанием температуры электролита, приводящей к его закипанию с интенсивным выбросом паров дистиллированной воды из элементов. Иногда вплоть до полного высыхания емкостей. Естественно, что ресурс аккумуляторной батареи резко снижается.

Поэтому задачу ограничения зарядного тока решают контроллерами или вручную. Последний способ: постоянно контролировать по приборам величину напряжения и коммутировать переключатели руками такой неблагодарный, что существует только в теории.

Типовая схема подключения контроллера

Типовая схема подключения контроллера

Алгоритмы работы контроллеров заряда солнечных батарей

По сложности способа ограничения предельного напряжения приборы изготавливают по принципам:

1. Откл/Вкл (или On/Off), когда схема просто коммутирует аккумуляторы к зарядному устройству по величине напряжения на клеммах,

2. широтно-импульсных (ШИМ) преобразований,

3. сканирования точки максимальной мощности.

Принцип №1: Схема Откл/Вкл

Это наиболее простой, но самый ненадежный метод. Его главный недостаток в том, что при возрастании напряжения на клеммах аккумумляторной батареи до предельного значения полного заряда емкости не происходит. Она доходит в этом случае примерно до 90% номинального значения.

У аккумуляторов постоянно происходит регулярный недобор энергии, который значительно снижает срок их эксплуатации.

Принцип №2: Схема ШИМ контроллеров

Сокращенное обозначение этих устройств на английском языке: PWM. Они выпускаются на основе конструкций микросхем. Их задачей является управление силовым блоком для регулирования напряжения на его входе в заданном диапазоне с помощью сигналов обратной связи.

PWM контроллеры дополнительно могут:

учитывать температуру электролита встроенным либо выносным датчиком (последний способ точнее),

создавать температурные компенсации зарядным напряжениям,

настраиваться под определенный тип аккумуляторов (GEL, AGM, жидко-кислотные) с разными показателями графиков напряжений в одинаковых точках.

Увеличение функций PWM контроллеров повышает их стоимость и надежность работы.

График работы солнечной батареи

График работы солнечной батареи

Принцип №3: сканирование точки максимальной мощности

Такие устройства обозначают английскими буквами MPPT. Они тоже работают по способу широтно-импульсных преобразователей, но предельно точны потому, что учитывают наибольшую величину мощности, которую способны отдать солнечные батареи. Это значение всегда точно определяется и вносится в документацию.

Например, для гелиобатарей 12 В точка отдачи максимальной мощности составляет порядка 17,5 В. Обыкновенный PWM контроллер прекратит заряд аккумумляторной батареи при достижении напряжения 14 — 14,5 В, а работающий по технологии MPPT — позволит дополнительно использовать ресурс солнечных батарей до 17,5 В.

С увеличением глубины разряда аккумуляторов возрастают потери энергии от источника. МРРТ контроллеры уменьшают их.

Характер отслеживания напряжения, соответствующего отдаче максимальной мощности солнечной батареи в 80 ватт, демонстрируется усредненным графиком.

Таким способом МРРТ контроллеры, используя широтно-импульсные преобразования во всех циклах заряда аккумуляторов, увеличивают отдачу солнечной батареи. В зависимости от разных факторов экономия может составлять 10 — 30%. При этом ток выхода из аккумулятора будет превышать ток входа в него из солнечной батареи.

контроллер MPPT

Основные параметры контроллеров заряда солнечных батарей

При выборе контроллера для солнечной батареи кроме знания принципов его работы следует обратить внимание на условия, для которых он разработан.

Главными показателями приборов являются:

значение входного напряжения,

величина суммарной мощности солнечной энергии,

характер подключаемой нагрузки.

Напряжение солнечной батареи

На контроллер может подаваться напряжение от одной или нескольких солнечных батарей, соединенных по разным схемам. Для правильной работы прибора важно, чтобы суммарная величина подаваемого на него напряжения с учетом холостого хода источника не превышала предельной величины, указанной производителем в технической документации.

Читайте также  Как выглядит технология производства солнечных батарей?

При этом следует сделать запас (резерв) ≥ 20% из-за ряда факторов:

не секрет, что отдельные параметры солнечной батареи иногда могут быть чуть-чуть завышены в рекламных целях,

происходящие на Солнце процессы не носят стабильного характера, а при аномально повышенных вспышках активности возможна передача энергии, создающая напряжение холостого хода солнечной батареи выше расчетного предела.

солнечная батарея

Мощность солнечной батареи

Она важна для выбора контроллера потому, что прибор должен быть способен надежно передавать ее рабочим аккумуляторам. В противном случае он просто сгорит.

Для определения мощности (в ваттах) умножают величину тока выхода из контроллера (в амперах) на напряжение (в вольтах), вырабатываемое солнечной батареей с учетом, созданного для него, 20% запаса.

Характер подключаемой нагрузки

Надо хорошо понимать назначение контроллера. Не стоит использовать его в качестве универсального источника питания, подключая к нему различные бытовые устройства. Конечно, часть из них сможет нормально работать, не создавая аномальных режимов.

Но…насколько долго это будет продолжаться? Прибор работает на основе широтно-импульсных преобразований, использует микропроцессорные и транзисторные технологии, которые учли в качестве нагрузки только характеристики аккумуляторов, а не случайных потребителей со сложными переходными процессами при коммутациях и меняющимся характером потребляемой мощности.

контроллер для солнечной батареи EP-Solar

Краткий обзор производителей

Выпуском контроллеров для солнечных электростанций занимаются многие страны. На Российском рынке популярна продукция компаний:

Morningstar Corporation (ведущий производитель США),

Beijing Epsolar Technology (работает с 1990-го года в Пекине),

AnHui SunShine New Energy Co (КНР),

Среди них всегда можно подобрать надежную модель контроллера, наиболее подходящую под конкретные условия эксплуатации солнечных электростанций с определенными техническими характеристиками. Для этого просто используете рекомендации этой статьи.

Про опыты с контроллерами солнечных панелей.

yWAAAgHSOuA 100

Ежели вы продвинутый в технических вопросах автотурист и у вас есть в машине солнечная электростанция с панелью такого размера, что может в некоторых случаях закипятить вам аккумуляторы, то нужно иметь какое-то устройство, которое будет ограничивать ток, выдаваемый солнечной панелькой после того как аккумуляторы зарядились.

Такое устройство называется контроллер заряда и купить его можно, в принципе, на каждом углу. (Это если самому делать лень :) )

Мы как-то начали делать продвинутый контроллер, но пока бросили — некогда. Поэтому пользуемся по работе китайскими.

Ну и когда я себе сделал на крышу большую солнечную панель я решил что есть риск что летом такая панель закипятит даже 200Ач аккум и даже оба аккума 200Ач и 90 Ач она закипятит.

Поэтому недолго думая поставил первый попавшийся под руку контроллер.

Фото в бортжурнале УАЗ Patriot

.
Простоял он не менее года и был я чота не очень доволен его работой, мне казалось он не полностью раскрывает потенциал солнечной панели.

Забегая вперед скажу, что мои подозрения оправдались, и вскрытие показало что этот контроллер фигня полная.

Так вот, сегодня у меня наконец-то дошли руки поставить более другой контроллер, правда той же торговой марки — епсолар.

Фото в бортжурнале УАЗ Patriot

Контроллер чуть более продвинутый, у него есть даже выносной мониторчик, который я установил в салоне

, протянув витую пару на крышу — к месту установки контроллера.

Фото в бортжурнале УАЗ Patriot

и он сразу показал

Фото в бортжурнале УАЗ Patriot

, выдаваемое солнечной панелькой.

Контроллер более продвинутый потому что в нем можно установить не только тип АКБ, но и ее

Фото в бортжурнале УАЗ Patriot

и он т.н. MPPT -типа. Т.е. типа круче предыдущего :)
.
Ну и кроме того там есть два таймера для отключаемой нагрузки, но мне такое вроде ни за чем не надо, поэтому отнесем это к виртуальным преимуществам.

Короче говоря, в данном контроллере по нормальному уже сделана схема зарядки и он сразу же начал дальше заряжать уже якобы заряженный предыдущим контроллером АКБ, вливая туда

Фото в бортжурнале УАЗ Patriot

Теперь буду наблюдать как будет себя чувствовать вся эта богадельня при реальной эксплуатации, и если чо выясню интересного — напишу.

ну а по поводу почему старый контроллер говно — вот

Фото в бортжурнале УАЗ Patriot

Фото в бортжурнале УАЗ Patriot

как видим, там нет даже дросселя ни одного. то есть, он тупо импульсами хреначит в сеть :) чота типа ШИМа :) — поэтому на нем написано PWM :)

поэтому и наводки от него были некислые на некоторые типы оборудования :)

Короче чо, если будете мутить контроллер заряда — пвм не ставьте, не рулит :)

рулит или не рулит мппт — думаю скоро станет понятно.

Если не рулит, тада будем дальше делать собственный, чтоб он даже ночью под луной заряжать умел :)

Источник https://akbinfo.ru/alternativa/controller-zarjada-solnechnoj-batarei.html

Источник http://electrik.info/main/energy/867-kontrollery-dlya-solnechnyh-batarey.html

Источник https://www.drive2.ru/l/473373566813864861/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: