Совместная работа ветрогенератора и солнечных батарей

 

Комбинированные системы с солнечными батареями и ветрогенераторами

Использование солнечных батарей позволяет обеспечить дома бесплатной энергией, особенно в условиях нестабильности электроснабжения. Однако у этого метода есть один недостаток – в пасмурную погоду эффективность гелиосистемы очень низка, и дому требуется дополнительный источник энергии. Применение разного рода генераторов (бензиновых, дизельных) неудобно, поскольку они требуют значительных расходов и очень шумят. Лучший выход – комбинированные установки, включающие в себя солнечные батареи и ветрогенераторы.

Такие гибридные комплексы позволяют в полной мере использовать возможности природной энергетики и компенсировать их отдельные недостатки. К примеру, ветрогенераторы в принципе нецелесообразно применять без резервного энергоисточника. Дело в том, что при нескольких безветренных днях подряд (что отнюдь не редкость) аккумуляторы разряжаются слишком сильно, что негативно сказывается на их работоспособности и ресурсе.

солнечные батареи и ветрогенератор

Солнечные же батареи малоэффективны в пасмурную погоду, которая обычно сопровождается ветреностью. Таким образом, ветряки и гелиопанели отлично дополняют друг друга, обеспечивая постоянную зарядку АКБ и поддерживая энергоснабжение дома на должном уровне. Еще одно преимущество – солнечные системы не требуют расходов на содержание и топливо, при этом они максимально эффективны в летний период, когда скорость ветров обычно ниже.

В летний период и солнечной зимой максимальная энерговыработка будет идти от солнечных батарей. А вот в пасмурное межсезонье, когда облачность значительна и дуют сильные ветра, производить энергию будут преимущественно ветряки.

Состав гибридных систем

Каждая комбинированная солнечно-ветровая установка включает в себя гелиопанели, ветрогенератор, зарядный контроллер, аккумуляторы и инвертор. Мощность компонентов подбирается исходя из нужд энергопотребления. Но нужно учитывать и еще один фактор – тип ветрогенератора.

  • Горизонтальные. Эти установки дешевле, но они эффективны при господствующих ветрах одного направления. В условиях переменных ветров их производительность минимальна;
  • Вертикальные. Стоят эти источники энергии примерно в 2-3 раза дороже горизонтальных, но при этом эффективно работают и в случае постоянно меняющегося направления ветра.

Таким образом, ветрогенераторы и солнечные батареи могут полностью обеспечить энергонезависимость жилья. Кроме того, такие системы отличаются более гибкими возможностями подбора конфигурации, чем чисто солнечные или чисто ветряные установки. Вполне приемлемы и расценки на них.

Например, система из ветряка мощностью 600 Вт и батареи в 250 Вт (с контроллером, инвертором и АКБ) обойдется примерно в 85 тыс. рублей. Выработка установки составит порядка 100 кВтч/месяц.

Установка и коммутация

Монтируются элементы в гибридной системе также, как и в случае независимой установки. Солнечные батареи располагают на крыше или на отдельной монтажной ферме (в этом случае можно оптимально отрегулировать их наклон относительно горизонта), а ветряки – на мачтах возле дома.

Несмотря на то, что при вращении лопасти ветряков издают специфический звук (что многие относят к их недостаткам), они не создают дополнительных неудобств. Дело в том, что звук достаточно монотонен и не резок, поэтому люди очень быстро перестают замечать его.

устройство гибридной системы

Подключение проводится по классической схеме. Ветрогенератор и солнечные панели через контроллер коммутируются к АКБ, где и накапливается выработанная энергия. Потребители переменного тока подсоединяются через инвертор.

Читайте также  Солнечная панель для зарядки автомобильного аккумулятора 12В: особенности и обзор зарядных устройств

Затраты

Как и любая другая автономная энергосистема, солнечно-ветряная установка требует солидных первоначальных расходов. Однако все вложения окупаются полной энергонезависимостью от центральных сетей. Расходов же на обслуживание такая система не требует. Окупаемость проекта зависит от сложности установки и нагрузки на систему, но в среднем она составляет 2-3 года. Этот срок может показаться слишком большим, но нужно учитывать, что цены на электричество постоянно поднимаются, кроме того, подключение коттеджа к центральному энергоснабжению и установка соответствующего оборудования (трансформатора, кабельной трассы) также требуют солидных затрат.

Таким образом, для дома установка гибридной системы будет лучшим решением. На даче ставить подобные комплексы нерационально, поскольку они рассчитаны на круглогодичное использование, а дачей пользуются в основном в летний сезон.

Совместная работа ветрогенератора и солнечных батарей

В этой статье я хочу поделится своим опытом по подключению и совместной работе солнечных батарей вместе с ветрогенератором через один солнечный контроллер. Чтобы ввести в курс дела начну по по порядку. Солнечные панели у меня четыре штуки на 12В по 100 ватт (400 ватт), и имеется самодельный ветрогенератор мощностью 300 ватт. Они подключены к одному контроллеру для солнечных батарей ФОТОН 100-50.

Солнечные панели соединены на 24 вольта, то есть по две панели последовательно и далее уже в параллель, напряжение холостого хода 44 вольта. Они подключены к контроллеру штатно, так же параллельно солнечным батареям включен и ветрогенератор, то есть они работают и одновременно заряжают АКБ. Ниже фотография внутренней части моей мини электростанции.

Вообще нельзя подключать ветрогенератор к солнечным контроллерам если они не имеют защиты по входному напряжению и по току. Нельзя потому что если напряжение ветрогенератора превысит максимально допустимое напряжение контроллера, то сгорят транзисторы. В обычных PWM контроллерах на 12/24 вольта максимально допустимое входное напряжение около 50 вольт. И например когда аккумуляторы уже хорошо заряжены то они не весь ток потребляют и контроллер начинает его ограничивать. Соответственно входное напряжение повышается, ветрогенератору становится легче, и он при наличие хорошего ветра начинает набирать большие обороты и напряжение повышается, и если он превысил порог то контроллер сгорает. ахА если при этом сильный ветер, как это обычно случается, то есть риск что ветряк без нагрузки пойдёт вразнос, наберёт бешеные обороты и «скинет» лопасти.

В контроллер ФОТОН 100-50 есть все необходимые защиты, поэтому при подключении ветряка ничего страшного не случится, что подтверждено многочисленными видео на моём канале yutube про работу ветряка с этим контроллером. В настройках контроллера есть один из трёх режимов, в котором у меня с ним нормально работает ветрогенератор. Принцип работы этого режима такой:

Контроллер работает в режиме работы по напряжению в процентах от Uxx, и измеряет раз 1-2 секунды напряжение холостого хода ветряка, и просаживает его на 20%. Например если напряжение холостого хода ветряка 50 вольт, то контроллер подсаживает его до 32 вольта и с этой точки снимает мощность. Например если будет 32А и ток по входу 4А, то на выходе ток заряда составит 9А на АКБ 13 вольт. Если ветрогенератор раскручивается то его напряжение повышается и контроллер измеряя его повышает точку отбора мощности. И наоборот если обороты падают то и напряжение уменьшается, и контроллер понижает точку отбора мощности. С моим ветряком начало заряда с 14 вольт происходит, и на сильном ветру напряжение бывает под 60-80 вольт подскакивает.

Читайте также  Альтернативный источник энергии — солнечные панели.

С солнечными панелями контроллер работает также, но у них напряжение стабильное и не меняется. Поэтому если днём светит солнце то контроллер забирает энергию с панелей держа точку MPPT в пределах 36-38 вольт. И если есть ветер то пока напряжение ветрогенератора ниже этого напряжения то зарядки нет от него и работают только солнечные панели. Но как только напряжение станет выше то и ветрогенератор начинает заряжать акб. У меня ветрогенератор оптимально работает на 24-36-48в и поэтому он удачно подошёл для совместной работы с панелями и к контроллеру.

Когда аккумуляторы почти заряжены и начинается ограничение по току, и контроллер переходит в режим поддержки то входное напряжение увеличивается. И если ветрогенератор оказывается мощнее чем потребление энергии то напряжение по входу повышается и начинается работа только от ветряка, а рабочее напряжение солнечных батарей становится ниже. Как это работает можно увидеть на этом видео:

Контроллер у меня уходит в защиту при 44.3 ампера, поэтому я выставил в настройках ток заряда максимальный 44А. Если ток заряда окажется больше то контроллер не уходит в защиту, а просто ограничивает ток на этом уровне.

В таком режиме солнечные панели вместе с ветрогенератором работают у меня всю зиму, и лично мне всё нравится учитывая особенности именно моей электростанции.

Подробная схема подключения ветрогенератора: прямое соединение ветряка с аккумулятором

1430317130 3 2 1 - Подробная схема подключения ветрогенератора: прямое соединение ветряка с аккумулятором

Порядок подключения ветрогенератора является важным моментом эксплуатации устройства, от которого зависит возможность выполнения комплектом своих функций, сохранность оборудования в рабочем состоянии и долговечность аппаратуры. Неправильное подключение может вывести из строя отдельные узлы, аккумуляторные батареи. Для того, чтобы исключить возможность ошибки, надо заранее уяснить себе схему присоединения элементов комплекса друг к другу, правильное подключение балласта и нагрузки.

Как правильно подключить ветрогенератор?

Прежде, чем начинать рассмотрение правил подключения, надо определиться с составом комплекта. Ветрогенератор представляет собой целую систему оборудования, из которого вращающийся ветряк — только преобразователь энергии ветра во вращательное движение, заставляющее функционировать генератор.

Дальше напряжение подается на контроллер сигнала. Это прибор, следящий за состоянием аккумуляторных батарей. Если они загружены полностью, контроллер переключает их с режима зарядки на режим потребления, параллельно включая балластное сопротивление (потребитель) для снятия лишнего заряда.

Напряжение с аккумуляторов идет на инвертор, который преобразует постоянный ток аккумуляторов в стандартные 220 В, 50 Гц, которые питают бытовую технику, освещение и прочие приборы потребления.

Основные схемы

Возможны различные схемы подключения ветрогенератора. Основная коммутация остается неизменной, варианты касаются только присутствия дополнительного источника энергии. Различают:

  • питание только от ветроустановки
  • ветрогенератор работает в паре с сетевым электричеством. При разряде аккумуляторов происходит переключение на сетевые ресурсы, после зарядки батарей установка вновь переключается на обеспечение потребителей
  • подключение параллельно с бензогенератором. Разряд батарей инициирует запуск бензогенератора, затем обратное подключение ветряка
  • параллельное подключение с солнечными батареями. Один из наиболее часто встречающихся комплектов. Используются солнечные батареи, работающие параллельно с ветряком и, по необходимости, берущие на себя основное обеспечение потребителей
  • на Западе излишки выработанной энергии сбрасываются в сеть, за что владелец ветряка получает некоторую плату. В России такого оборудования пока не имеется, поэтому излишки попросту утилизируются с помощью балластных сопротивлений.
Читайте также  Калькулятор на солнечных батарейках с Алиэкспресс: гордый ответ японским Citizen

FOZWV7THZS8WGFY - Подробная схема подключения ветрогенератора: прямое соединение ветряка с аккумулятором

Сетевая схема подключения

Сетевая схема представлена в двух вариантах:

  • сетевая схема без аккумуляторов. Выработанная энергия отдается в сеть, а потребители питаются из нее. Владелец платит только за разницу между выработанной и потребленной энергией. В России такой вариант не реализован
  • сетевая схема с аккумуляторами. В данном случае подключение к сети используется только при разряде аккумуляторов, т.е. сетевые ресурсы используются как гарантия.

Такая схема подключения имеет свои достоинства и недостатки, но для того, чтобы она была действительно выгодной, надо, чтобы выработанной энергии хватало на обеспечение большого количества потребителей, а оборудование стоило довольно дешево. В противном случае проще постоянно пользоваться сетевой энергией, а ветряк держать на случай внезапных перебоев. Так будет надежнее, проще и появится возможность увеличить срок службы ветрогенератора.

Как подключить контроллер к ветрогенератору?

Контроллер — это самый первый прибор, на который подается напряжение, выработанное генератором. Подключение контроллера производится посредством специальных клемм. Генератор подключается ко входу, а выходные клеммы соединяются с аккумуляторными батареями.

Функции контроллера могут быть значительно расширены, он способен производить мониторинг состояния аккумуляторов, следить за напряжением от генератора и вовремя переключать систему на сетевое питание.

Функционал контроллера полностью зависит от того, кто его собирал (заводское исполнение или самоделка), от типа конструкции, модели и т.д.

Существует множество схем для самостоятельного изготовления, в которых всего несколько простых деталей. Такие схемы легко реализуются даже людьми с начальной подготовкой, они надежны и нетребовательны. При самостоятельном изготовлении ветряка такие схемы обеспечивают полноценное функционирование, а отсутствие каких-то дополнительных возможностей не является значительным минусом. Чем меньше элементов в схеме, тем она надежнее и меньше подвержена отказам или поломкам, поэтому вариант наиболее удачный.

DSC 0138 - Подробная схема подключения ветрогенератора: прямое соединение ветряка с аккумулятором

Подключение ветряка к аккумулятору

Подключение аккумулятора к генератору производится через выпрямитель — диодный мост. Аккумуляторные батареи нуждаются в постоянном токе, а генератор ветряка выдает переменку, причем, весьма нестабильную по амплитуде. Выпрямитель изменяет переменный ток, модифицируя его в постоянный. Если генератор трехфазный, то необходимо использовать трехфазный выпрямитель, на это надо обращать особенное внимание.

Прямое подключение ветряка к аккумулятору — опасное решение, поскольку параметры напряжения, выдаваемого ветряком, не имеют стабильности. Резкое повышение напряжения, выходящее за пределы номинала батарей, способно вывести их из строя.

Аккумуляторы обычно не новые, они способны закипеть. Поэтому настоятельно рекомендуется использовать хотя бы простенький контроллер, изготовленный из реле-регулятора. Он вовремя отключит зарядку и сохранит работоспособность аккумуляторных батарей. В любом случае не следует экономить на оборудовании и сокращать состав комплекта, так как от него зависит полноценная работа всей ветроустановки.

Подключение однофазного ветрогенератора к трехфазному контроллеру

Однофазный генератор может быть подключен к трехфазному контроллеру либо на одну фазу, либо параллельно на все три. Более правильным вариантом считается использование одной фазы, т. е. ветряк подключается к двум контактам — защемляющему и одному фазному. Это обеспечит правильную обработку напряжения и выдачу его на приборы потребления.

В целом, использование таких разнородных устройств нецелесообразно. Кроме того, путаница с вариантами подключения способна создать значительную угрозу целостности оборудования, что недопустимо. При сборке комплекта надо сразу определиться с его составом и типом смежных приборов, чтобы не допустить использования разноплановых устройств в единой связке. Допускать рискованные соединения можно только подготовленным людям, являющимися специалистами в электротехнике, хотя сами они подобные действия решительно отвергают.

Источник https://solarb.ru/kombinirovannye-sistemy-s-solnechnymi-batareyami-i-vetrogeneratorami

Источник http://e-veterok.ru/076-Sovmestnaya-rabota-vetrogeneratora-i-solnechnykh-batarey.php

Источник https://energo.house/veter/shema-podklyucheniya-vetryaka.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: