Восстановление марганца, кремния, фосфора и других элементов

 

В.№39: Восстановление марганца, кремния, фосфора и др. элементов в доменной печи.

Марганец в доменную печь попадает либо в составе агломерата в виде силикатов марганца MnO-SiO2; (MnO)2-SiO2, либо с марганцевой или железной рудой, которые загружают в печь при выплавке чугуна с высо­ким содержанием марганца. Марганец в состав руд вхо­дит в виде оксидов MnO2, Mn2O3, Mn3O4. Высшие окси­ды марганца довольно легко восстанавливаются домен­ными газами при умеренных температурах на колошни­ке доменной печи до MnO по следующим реакциям:

2Мп02 + СО = Mn2O3 + CO2 — 227556 Дж;

ЗМп203 + СО = 2Mn304 + CO2- 170270 Дж;

Mn3O4 + СО = ЗМпО + CO2 — 52080 Дж.

Эти реакции протекают с выделением большого, коли­чества тепла. Процесс восстановления марганца из MnO по реакции МпО+С = Мп+СО+288288 Дж протекает с поглощением тепла. В доменной печи возможно обра­зование и карбида марганца: ЗМпО + 4С=Мп3С+ЗСО. В присутствии железа процесс восстановления марганца протекает при 1100—1300 °С. Большая часть марганца в виде силиката MnO-SiO2 переходит в шлак, но благода­ря наличию извести, стремящейся соединиться с кремне­земом, восстановление марганца из шлака углеродом возможно и протекает по реакции Mn0-Si02+Ca0+C = =Mn + CaO-SiO2+CO+229068 Дж. Степень восстанов­ления марганца составляет при выплавке обычных чугу­нов ~50 %, а при выплавке марганцовистых ферроспла­вов 70 %. Марганец теряется частично в виде оксидов в шлаке, частично улетучивается с доменным газом. Для максимального извлечения марганца из шихтовых мате­риалов необходимо обеспечивать дополнительных приход тепла в печь, для чего повышают расход кокса, тем­пературу дутья. Применяют дутье, обогащенное кисло­родом, повышают содержание извести в шлаках. Содер­жание марганца в литейном чугуне 0,5—1,3 %, а в пере­дельном 0,5—1,5 %. Содержание марганца в передельном чугуне зависит от содержания серы, поскольку марганец способствует удалению серы из чугуна. При работе на сернистом коксе содержание марганца повышают до 1,0 %, а при работе на низкосернистом коксе в чугуне может быть 0,25—0,50 % Mn. Для доменщиков выгодно выплавлять чугун с пониженным содержанием марганца, так как это позволяет экономить кокс, повышает произ­водительность печи и снижает себестоимость чугуна. Однако для успешного хода кислородно-конвертерного процесса требуется чугун с содержанием 0,7—1,1 % мар­ганца. Помимо обычных чугунов, в случае необходимости в доменной печи можно выплавлять ферромарганец с 70—75 % марганца, зеркальный чугун с содержанием марганца 10—25 %. Для выплавки этих сплавов в шихту дают марганцевую руду или марганцевый агломерат, повышают расход кокса до 1000 кг/т зеркального чугу­на и 2000 кг/т ферромарганца. Дутье обогащают кисло­родом до 30—35 %. Это снижает высокую температуру на колошнике печи, помогает уменьшить потери марган­ца в результате его испарения, уменьшает на 20—30 % расход кокса.

Восстановление кремния

Кремний попадает в доменную печь либо в виде кремнезема SiO2, либо в виде силикатов^, (соединений кремнезема с другими оксидами) в составе железной руды или агломерата, золы кокса, известяка. Кремний имеет сродство к кислороду значительно более высокое, чем железо, поэтому кремний восстанавливается по ре­акции прямого восстановления: Si02-f2C — Si + 2C0-f — +635 кДж, протекающей с поглощением тепла. В чис­том виде такая реакция проходит при высоких темпера­турах (— 1500 °С). Однако на практике в присутствии железа образуется силицид железа FeSi. Кремний выво­дится из сферы реакции. Равновесие реакции восстанов­ления кремнезема сдвигается в правую сторону, т. е. в сторону образования кремния или силицидов, а сама реакция успешно протекает при значительно более низ­ких температурах, например при 1050—1150 0C.

Для восстановления кремния необходимо увеличи­вать расход кокса, повышать температуру дутья, обога­щать дутье кислородом, применять легковосстановимую железосодержащую шихту с тугоплавкой пустой поро­дой, кремнезем которой равномерно распределен в массе оксидов железа. В доменной печи восстанавливается до 30 % кремния, остальное в виде SiO2 переходит в шлак. При производстве высококремнистых чугунов необходи­мо стремиться к получению шлака с пониженным содер­жанием извести, так как CaO связывает кремнезем в прочные соединения (силикаты), которые с трудом под­даются восстановлению. Обычно содержание кремния в передельных чугунах составляет 0,5—0,8 %, в литейных 0,7—3,8 %. При дефиците электрического ферросилиция в доменных печах иногда выплавляют бедный ферроси­лиций, содержащий 9—18 % кремния. Для этого в до­менную печь приходится давать большое количество ме­таллолома— до 450 кг на тонну сплава и значительно повышать долю кокса. В среднем на каждый процент кремния в чугуне расход кокса достигает 1000—1300 кг/т. И5 этих данных видно, что производство такого сплава в доменной печи малоэффективно.

Восстановление фосфора

Фосфор, находящийся в рудах в виде фосфорнокислого кальция Са3Р2O8, восстанавливается также раскаленным углеродом топлива в присутствии SiO2.

Восстановление марганца, кремния, фосфора и других элементов

В доменную печь с шихтовыми материалами, кроме оксидов железа, поступают оксиды элементов Мn, Cr, Al, Mg, Ca, Si, P и др. Они так же, как и оксиды железа, подвергаются воздействию высоких температур и восстановительной атмосферы. Результаты этого воздействия зависят от химической прочности оксидов. Чем прочнее оксид, тем в меньшей мере он подвержен восстановлению.

Сравнительная характеристика прочности оксидов некоторых элементов показана на рисунке 4.1. Оксиды, прочность которых характеризуется линиями, расположенными выше линии 7 (реакция 2Fe + О2 = 2FeO), в доменной печи восстанавливаются сравнительно легко в зоне умеренных температур за счет СО и Н2. К ним относятся (Fe2О3 и Fe3О4) МnО2, Мn2О3, Мn3О4, CuО2 и NiO. Медь и никель в доменной печи восстанавливаются полностью, переходя в чугун.

Оксиды, прочность которых характеризуется линиями, расположенными ниже линии 7, восстанавливаются труднее, чем железо из закиси железа, или вовсе не восстанавливаются и полностью переходят в шлак. Например, хром из окисла Сr2O3 восстанавливается и переходит в чугун почти полностью. Марганец из МnО восстанавливается на 40–70%, а кремний из SiO2 – лишь в незначительных количествах. Восстановление этих элементов протекает при высоких температурах за счет углерода горючего. Оксиды А12O3, CaO, MgO вследствие большого химического сродства элементов к кислороду в доменной печи практически не восстанавливаются, а переходят в шлак.)

Mn, Si и Р являются постоянными примесями чугуна и определяющими его качество и назначение.

1. Восстановление марганца. В доменную печь марганец поступает с марганцевыми и иногда с железными рудами в виде оксидов MnО2, Mn2О3, Mn3О4 и MnО, входящих в состав минералов пиролюзита, псиломелана, гаусманита, родохрозита и др. его восстановление протекает ступенчато по схеме:

Первые два окисла легко отдают кислород, восстанавливаясь до Mn3О4. Реакции восстановления MnО2 и Mn2О3 протекают в верхней части печи необратимо с выделением значительного количества тепла:

Читайте также  Доменная печь: как появилась, схема, конструкция и компоненты, как работает

Выделяемое тепло не может быть использовано в доменной печи, оно уносится отходящими газами. При проплавке большого количества сырой марганцевой руды (например, при выплывке ферромарганца) температура отходящих газов нередко достигает 600 – 700° С, что отрицательно сказывается на стойкости металлоконструкций колошника. Поэтому желательно марганцевую руду подвергать агломерации не только из соображений ее окускования, но и с целью вынесения экзотермических реакций восстановления высших оксидов марганца за пределы доменной печи.

Оксид Mn3О4 также сравнительно легко восстанавливается в доменной печи за счет СО:

Mn3О4 + m»СО = 3МnО +(m»- 1)СО + СO2 + 12400 ккал, (6.31)

Равновесие реакции (4.31) устанавливается при меньшей концентрации СО в газовой смеси, чем соответствующей реакции восстановления Fe3О4, т. е. оксид Mn3О4 менее прочный, чем оксид Fe3О4. Восстановление марганца из закиси марганца в доменной печи протекает практически полностью за счет углерода горючего при температуре выше 1000° С:

MnO + C → Мn + СО — 68640 ккал. (6.32)

Температура начала восстановления марганца из монооксида совпадает с температурой начала образования шлака в присутствии монооксида марганца. Поэтому наряду с получением металлического марганца образуется его силикат MnO + SiО2→ MnSiО3, затрудняющий восстановление марганца. С повышением содержания извести в шлаке, условия восстановления марганца из силикатов улучшаются благодаря вытеснению закиси марганца из силиката известью

Марганец распределяется между чугуном, шлаком и газом. При выплавке передельного, чугуна примерно 40 – 55% Мn переходит в чугун, 5 – 10% марганца испаряются, окисляясь в верхней части печи до Mn3О4, и уносятся газами, а остальной марганец в виде МnО переходит в шлак. С увеличением концентрации марганца в доменной печи, например при выплавке ферромарганца, степень извлечения его в сплав достигает 70–80%.

Для максимального перевода марганца в сплав необходимо: высокая температура в горне, достигаемая увеличением относительного расхода кокса, повышением нагрева дутья, при обогащении кислородом; повышенная основность шлака, способствующая разрушению силикатов марганца, и уменьшение относительного выхода шлака.

2. Восстановление кремния. В доменную печь кремний поступает в виде кремнезема или силикатов, содержащихся в шихтовых материалах. Оксид SiО2 намного прочнее оксидов марганца и железа, поэтому восстановление кремния может протекать только в нижней части печи за счет углерода с поглощением большого количества тепла. Переход кремния в чугун зависит от температуры в горне, химического состава шлака и. его свойств. При выплавке передельного чугуна содержание кремния в нем обычно не превышает 1%, при выплавке литейных чугунов оно возрастает до 3,75%, а при выплавке ферросилиция – до, 15%. Получить в доменной печи сплав содержащий, более 15% Si, невозможно по температурным условиям. Ферросилиций, содержащий 45 и 75% Si, получают в электрических, ферросплавных печах при более высоких температурах, чем в горне доменной печи.

Восстановление кремния также протекает ступенчато с образованием промежуточного окисла (моноокиси кремния):

SiO2 + C → SiО + CO

SiO + 2C → Si + CO

SiО2 + 2C → Si + 2CO – 151900 ккал. (6.34)

Восстановление кремния углеродом начинается при 1500 °С. В присутствии железа кремний восстанавливается при более низких температурах (но не ниже 1050° С). Кремний восстанавливается из кремнезема, находящегося в расплаве и в значительной мере связанного с CaO, MgO и другими оксидами. Чем меньше свободного кремнезема в шлаке, тем труднее восстановление кремния. Для максимального восстановления кремния необходимы: высокая температура в нижней части печи и по возможности более кислый и тугоплавкий шлак, что при выплавке высококремнистого чугуна можно обеспечить увеличением содержания в нем глинозема.

Содержание кремния в чугуне используют как показатель теплового состояния горна и температуры жидких продуктов плавки. Уменьшение содержания кремния в чугуне свидетельствует о снижении его температуры и, наоборот, увеличение содержания кремния в чугуне свидетельствует о повышении температуры.

image127

Рисунок 6.7 — Взаимосвязь температуры и содержания кремния в чугуне

Повышение нагрева горна для выплавки высококремнистого чугуна требует увеличения расхода кокса. При выплавке литейного чугуна расход кокса увеличивают на 5–15%, а при выплавке доменного ферросилиция расход кокса достигает 1300 – 1500 кг на тонну сплава, т. е. в 2,5 – 3 раза больше, чем на выплавку одной тонны передельного чугуна.

3. Восстановление фосфора. Фосфор содержится во всех материалах доменной шихты, но наибольшее количество его, достигающее иногда 1,2 и даже 1,5%, содержится в железорудных материалах. В шихтовых материалах фосфор находится преимущественно в виде фосфата кальция Са3(РО4)2, входящего в состав минерала апатита. В железных рудах фосфор иногда встречается в виде гидрофосфата железа вивианита Fe3(PО4)2∙ 8Н2О.

В условиях доменной плавки фосфор на 100% восстанавливается и практически полностью переходит в чугун. Единственным способом снижения его содержания в чугуне является загрузка в печь материалов с низким содержанием фосфора.

Восстановление фосфора из свободного окисла Р2О5 возможно оксидом углерода и водородом при температуре около 800 °С. Из фосфата железа Fe3(PО4)2 восстановление фосфора водородом начинается уже при температуре 400 °С, а оксидом углерода – при температуре 500–700 °С, но наиболее интенсивно непрямое восстановление фосфора протекает соответственно при температурах 900–1000 и 1000–1200 °С с образованием фосфида железа и фосфора, которые растворяются в чугуне.

Восстановление фосфата железа описывается уравнениями:

Реакция (6.35) идет при температурах ниже 1000° С, а реакция (6.36) – при температурах выше 1000° С.

Восстановление фосфора из фосфата кальция Са3(РО4)2 идет только при 1200 °С и выше в основном из шлака за счет углерода. Это объясняется более высокой химической прочностью фосфата кальция по сравнению с прочностью фосфата железа, так как из последнего одновременно с восстановлением фосфора идет и восстановление железа. Восстановление фосфора из фосфата кальция облегчается в присутствии свободного кремнезема, который взаимодействует с оксидом кальция фосфата, освобождая фосфорный ангидрид Р2О5 от химических связей. Процесс восстановления фосфора из фосфата кальция в присутствии кремнезема описывается реакциями:

Хром встречается в виде примеси в некоторых железных рудах в соединении FeO×Сr2O3. Восстановление его протекает при высоких температурах за счет углерода по схеме Сr2O3 → СrО→Сr. Хром полностью восстанавливается и переходит в чугун. Полнота восстановления хрома по сравнению с марганцем объясняется тем, что хром не образует силикатов. В доменной печи -можно выплавлять 40%-ный феррохром, используемый для легирования стали. Однако в связи с высоким расходом кокса на его выплавку, плохой текучестью сплава и высоким содержанием углерода выплавлять феррохром в доменных печах невыгодно.

Читайте также  Интернет-магазин автоматики Dungs. Гарантированное качество для вашего бизнеса

Титан является аналогом кремния, но обладает более высоким сродством к кислороду. Он содержится в рудах либо в виде свободной окиси титана, либо в виде титанита железа, образующего минерал ильменит FeO∙ТiО2. Ильменит является составной частью титаномагнетитовых руд. При плавке этих руд в доменной печи титан в основном в виде оксидов переходит в шлак.

В настоящее время из титаномагнетитовых руд выделяют минерал ильменит, переводят оксиды титана в шлак, затем в специальных агрегатах получают четыреххлористый, титан TiCl4, из которого титан восстанавливают магнием.

Ванадий в, виде оксидов в небольших количествах (до 1%) входит в состав железных руд, чаще всего фосфористых или тис таномагнетитов. Восстановление ванадия из оксидов протекает ступенчато: V2O5 → V2O3 →VO →V. Высший оксид V2O5 легко отдает кислород и может восстанавливаться оксидом углерода и водородом. Низшие оксиды V2O3 и VO восстанавливаются углеродом в зоне высоких температур. При основных шлаках и высоком нагреве горна степень восстановления ванадия в чугун достигает 75 – 88%.

Никель – легирующий элемент. Он содержится в некоторых железных рудах в незначительных количествах (сотые доли процента) и виде оксидов. В доменной печи никель из оксидов восстанавливается ступенчато в верхней части шахты непрямым путем. Восстановление его заканчивается при температуре около 900 °С. В доменной печи никель полностью переходит в чугун, а из чугуна в сталь.

Медь иногда содержится в рудах в виде оксидов СuО и СuО2. В доменной печи эти оксиды уже при температуре около 100° С полностью восстанавливаются, переходят в чугун, а затем и в сталь, резко снижай ударную вязкость металла. Поэтому в большинстве случаев медь считается вредной примесью в рудах. Только при производстве антикоррозионной стали, когда не требуется высокой прочности металла, медь является полезной примесью.

Мышьяк – аналог фосфора. Он встречается в фосфористых рудах в виде оксидов. В доменной печи полностью восстанавливается оксидом углерода, водородом и углеродом и переходит в чугун. В отличие от фосфора мышьяк в виде As2О3 частично -улетучивается с газами.

Цинк содержится в некоторых рудах в виде оксидов и сернистых соединений. В доменной печи он легко восстанавливается, но в чугун не переходит, а испаряется и, поднимаясь с газами, в зоне умеренных температур окисляется диоксидом углерода и водяными парами до ZnO. Последняя частично уносится газами, частично отлагается в порах и швах кладки, разрушая ее, а частично с шихтовыми материалами опускается в нижние горизонты печи, где восстанавливается до цинка, который снова возгоняется, образуя своеобразный круговорот, способствуя накоплению окиси цинка и разрушению кладки печи, а иногда и стального кожуха печи.

В некоторых, рудах содержится свинец; Он восстанавливается из соединений PbS и PbSO4 и лишь незначительно уносится газами. Основное его количество скапливается в горне под слоем чугуна. Обладая высокой жидкоподвижностью в перегретом состоянии, свинец проникает в мельчайшие поры и зазоры в кладке лещади и горна и разрушает ее.

Кремний

Кремний поступает в доменную печь в виде диоксида кремния (SiO2), одного из основных компонентов пустой породы рудных материалов и золы кокса. Диоксид кремния может восстанавливаться только при высоких температурах (выше 1350 о С) в нижней части печи. В условиях доменной печи при высоких температурах восстановителемSiO2из пустой породы железорудных материалов может быть только углерод.

img aNLMaI

. (2.2‑28)

Так как реакция восстановления кремния экзотермическая, то чем выше температура, тем выше скорость реакции, т.е. количество восстановленного кремния в единицу времени. Следовательно, при высоких температурах в печи содержание кремния в чугуне будет выше.

Таким образом, основное условие восстановление кремния – это высокая температура. Влияние температуры на степень восстановления кремния столь велико, что содержание кремния в чугуне используется доменщиками как важнейший показатель нагрева печи. Поэтому доменщики внимательно следят за изменением содержания кремния в выпускаемом чугуне, определяя его не только путем химического анализа, но и по виду излома пробы и виду текущего по желобу чугуна. Нагрев печи можно изменить, изменив приход тепла в печь. Основным средством для этого является изменение удельного расхода топлива.

Так как процесс восстановления кремния идет с увеличением объема газовой фазы, увеличение давления в доменной печи будет затруднять восстановление кремния. Опыт работы современных доменных печей на повышенном давлении подтверждает этот факт. Содержание кремния в передельном чугуне при нормальном температурном режиме составляет до 0,01%.

SiO2– кислотный оксид и в основных шлаках он связывается оксидом кальция в силикаты кальция (CaSiO3). Восстановления кремния из этого соединения требует еще больших затрат тепла и, следовательно еще более высоких температур:

img LX7vnA

– 26 000 кДж/кг Si. (2.2‑29)

Поэтому, чем ниже основность шлаков (CaO/SiO2), тем лучше условия восстановления кремния.

Количество шлака также влияние на степень восстановления кремния. Чем меньше шлака, тем ниже затраты тепла на производство чугуна и тем легче повысить температуру в печи. Поэтому условием увеличения степени восстановления кремния является работа с меньшим выходом шлака (использование богатых железорудных материалов).

Таким образом, для повышения степени восстановления кремния необходимы высокие температуры и низкий выход кислого шлака.

Фактическое содержание кремния в чугуне далеко от равновесного. Поэтому можно считать, что содержание кремния в чугуне зависит от кинетики процесса, т.е. времени пребывания расплава на коксовой насадке.

Степень восстановления кремния в доменных печах при выплавке передельных чугунов составляет всего 3…8%. При выплавке литейных чугунов температуры в печи создаются более высокими и степень восстановления кремния поднимается до 15…25% и только при выплавке ферросилиция, когда создаются наиболее благоприятные условия для восстановления кремния, она достигает 35…50%.

Фосфор в доменные печи попадает, главным образом, с рудными материалами в виде ортофосфата кальция Ca3(PO4)2и подобных ему соединений. Несмотря на то что, оксид фосфора очень прочное соединение (восстановление его возможно только при высоких температурах в области прямого восстановления), в доменной печи фосфор полностью восстанавливается и переходит в чугун.

Полному восстановлению фосфора способствует ряд обстоятельств:

Фосфора в доменные печи попадает сравнительно мало (но не с точки зрения получения качественного чугуна, а с точки зрения его относительного количества).

В пустой породе рудных материалов и золе кокса имеется достаточно двуокиси кремния, которая вытесняет пятиокись фосфора из ее соединений с основными окислами (P2O5 — кислый окисел).

Восстановленный фосфор образует фосфиды железа (FeP) и таким образом удаляется из системы реагирующих компонентов. Растворение фосфора в железе сдвигает равновесие в сторону образования фосфора.

Читайте также  Доменный процесс получения чугуна

Вследствие указанных причин процесс восстановления фосфора идет практически необратимо:

img

2.2‑30)

Таким образом, учитывая, что фосфор полностью переходит в чугун, единственным средством борьбы с фосфором при производстве чугуна является использование чистых по фосфору шихтовых материалов.

Сера в доменную печь вносится шихтовыми материалами и топливом, вдуваемым через воздушные фурмы с дутьем. Наибольшее количество серы вносит кокс. На его долю приходится не менее 50 % серы, поступающей в печь. Как правило, эта доля достигает 65 % и более, а в ряде случаев — 90 %.

img hyNb36

В коксе сера, в основном (на 80 %), является органической, т.е. находится в виде органических соединений, входящих в состав горючей массы кокса. Остальная сера — это сера, входящая в состав золы кокса, является сульфидной серой, связанной с железом в .

В железорудных материалах сера находится в виде:

сульфидов: пирита (), пирротина () и др. — в магнитных железняках;

img 21W0dM

сульфатов: и др. – окисленных рудах, агломератах и окатышах.

Вдуваемое с дутьем топливо также может содержать серу – угольная пыль и мазут. Сера в них содержится в виде органических соединений.

Органическая сера кокса в основной своей массе доходит до фурм и вместе с углеродом сгорает по реакции

img mpoGXX

. (2.2‑31)

Поднимаясь с газами через слой раскаленных материалов, в заплечиках и распаре печи сернистый газ взаимодействует с и углеродом с образованием сульфидов железаи кальция по реакциям

img Vkief

(2.2‑32)

img 9tcjP

(2.2‑33)

img

(2.2‑34)

В этих процессах сера восстанавливается из до элементной серы и взаимодействует собразуя соответствующие сульфиды.

Попавшие в доменную печь сульфаты при высоких температурах будут восстанавливаться углеродом по реакции

img sPDg3i

. (2.2‑35)

Таким образом, в результате описанных процессов сера будет находиться либо в виде , хорошо растворимом в чугуне, либо в виде, растворимом в шлаке и не растворимом в чугуне.

img JBEUec

Чтобы получить чистый по сере металл, необходимо как можно больше серы перевести в , т.е. в шлак. Это возможно в результате следующих реакций:

img zr2n0B

(2.2‑36)

Процесс удаления серы из чугуна протекает при высоких температурах. Поскольку атмосфера в доменной печи восстановительная и имеется достаточное количество углерода, то FeO восстанавливается углеродом:

img 9vGqwS

(2.2‑37)

Это обстоятельство является характерной особенностью десульфурации в доменных печах, которая может быть представлена суммарной реакцией:

img fF29D

(2.2‑38)

Образующийся при этом, сульфид кальция не растворяется в металле и переходит в шлак.

Как видно из уравнений, вещества, участвующие в процессе десульфурации находятся либо в чугуне (FeS, Fe, C), либо в шлаке (CaO, CaS).

Поэтому процесс десульфурации может протекать на границе их раздела. Наиболее благоприятные условия для его развития в горне печи, когда капли чугуна проходят через слой шлака.

Условия равновесия рассматриваемого процесса выражаются константой равновесия, которая является функцией только температуры:

img 5blpnX

. (2.2‑39)

Поскольку содержание серы в шлаке пропорционально содержанию в а содержание серы в чугуне пропорционально содержаниюв чугуне, то константа равновесия может быть записана в виде:

img WBD2Hd

. (2.2‑40)

Из этих уравнений следует, что для снижения содержания серы в чугуне надо увеличивать концентрациюв шлаке и уменьшать величиныи

Известно, что константа равновесия реакции десульфурации является функцией температуры. Поскольку реакции десульфурации идут с поглощением тепла, то с повышением температуры, согласно принципу Ле-Шателье, ее равновесие сдвигается вправо, т.е. в сторону увеличения концентрации . Поэтому, чем выше температура, тем выше значениеи, следовательно, содержание серы в металле. Практический интерес для нас представляет содержание серы в чугуне. Уравнение, связывающее содержание серы в чугуне с параметрами шихты, шлака и константой равновесия можно получить на основе баланса серы, который записывается следующим образом:

img fNiWMF

, (2.2‑41)

где – соответственно, содержание серы вi-ом материале, в чугуне, шлаке и газе;– удельный расходi-го материала;– удельный выход шлака;– удельный выход газа.

Основная часть серы распределяется между чугуном и шлаком. Отношение концентраций серы в шлаке и чугуненазывается коэффициентом распределения серы

img jo9VhG

. (2.2‑42)

Коэффициент распределения серы может быть выражен следующим образом:

img T5b8wW

. (2.2‑43)

Как и константа равновесия , коэффициент распределения серы является функцией температуры и основности шлака. Выразив содержание серы в шлаке черезполучим

img eGubgD

Подставив это выражение в правую часть балансового уравнения вместо , будем иметь:

img B5OwY1

. (2.2‑44)

img aFJBXV

Поскольку значение с ростом температуры и основности шлака возрастает, то из этого уравнения вытекает, что для максимального удаления серы из металла в шлак необходимо повышение температуры и основности шлака, повышение выхода шлака и снижение серы в шихтовых материалах.

Из рассмотренного видно, что удаление серы связано с увеличением удельного расхода топлива, а это в свою очередь приводит к снижению производительности печи.

В связи с этим представляет интерес внедоменная десульфурация чугуна. Она позволяет вывести процесс десульфурации из доменной печи, работать при малых выходах кислого шлака и нормальных температурах в печи, и, следовательно, иметь низкий удельный расход кокса и высокую производительность печи.

Существует несколько способов внедоменной десульфурации чугуна, которые отличаются реагентами, используемыми для этой цели, способом их присадки в чугун, конструкцией устройств для ввода присадок и т.д. Основной технологией десульфурации чугуна является вдувание реагентов (известь, карбид кальция, металлический магний) в чугуновозный ковш азотом.

Никель, медь, кобальтполностью переходят в чугун, и их содержание в чугуне зависит от количества этих металлов в шихте.

Хром, ванадий титанв доменных печах восстанавливаются и переходят в чугун частично (Cr на 80-90%, V — 70-90%, Ti — 3-5%), а не восстановленная часть их окислов переходит в шлак.

Цинк, полностью восстанавливается, испаряется и, попадая с газами в верхнюю часть печи и в газоотводы, конденсируется на восстановленном железе. Это явление затрудняет косвенное восстановление оксидов железа, что ведет к перерасходу кокса. Опускаясь вместе с рудными материалами, цинк снова испаряется. В доменной печи цинк накапливается и образует зону циркуляции. Часть цинка в виде мелких частиц цинкита газами проникает в поры и трещины огнеупорной кладки и там конденсируется, а также уносится из печи газами и осаждается в системе газоочистки. Накопившиеся в порах, швах и трещинах кладки печи, цинк и цинкит могут вызвать в ней напряжения. Кроме того на стенках печи могут образовываться так называемые настыли. На качество чугуна цинк никакого влияния не оказывает.

Восстановленный свинецбыстро стекает в горн и, поскольку он более плотный и не растворяется в чугуне, то скапливается на лещади печи самостоятельным слоем. Будучи сильно перегретым, он, имея малую вязкость и высокую плотность, легко проникает в поры и швы огнеупорной кладки и разрушает ее.

Источник https://infopedia.su/15×2069.html

Источник https://studopedia.ru/19_407407_vosstanovlenie-margantsa-kremniya-fosfora-i-drugih-elementov.html

Источник https://studfile.net/preview/1865388/page:7/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: