Устройство и требования к молниезащите зданий и сооружений

 

Содержание

Устройство и требования к молниезащите зданий и сооружений

Молниезащита зданий и сооружений — редкая система на крышах новых и современных домов. Это связано с уверенностью человека, что разряд молнии ударит куда угодно, только не рядом.

При попадании молнии в крышу, трубы и другие возвышающиеся конструкции придомовых территорий возникает грозовое перенапряжение и электромагнитные импульсы, которые создают угрозу любым электрическим приборам, включенным в электрическую сеть переменного тока.

Удар молнии создает опасность для электроприборов

Особенности системы молниезащиты

Молниезащита объекта — комплекс мероприятий и устройств, которые способны защитить отдельно стоящие здания и сооружения от ударов молний.

Существует три основных фактора воздействия молнии:

  • непосредственное попадание молнии в крышу здания;
  • удар в близлежащие коммуникационные и технические объекты;
  • удар в землю вблизи дома либо в рядом расположенный объект с дальнейшим попаданием разряда в землю.

В первом случае прямой удар может привести к серьезным разрушениям — резкое нагнетание температуры и запекание материалов кровли, а в редких случаях — даже к возгоранию деревянных конструкций и перекрытий крыш. Главный разрушающий фактор скрыт в ударной волне, которую порождает молния.

При ударе в коммуникационные объекты или в линии электропередач создается ток грозового импульса, который попадает в жилье по электрическим проводам и трубам. Это может привести к поражению человека электрическим током, повреждению оболочек и жил кабелей, поломке оборудования и сбою в работе внутренних систем.

Прямой удар молнии в крышу дома может привести к пожару

В третьем варианте разряд попадает в землю. При большом сопротивлении земли либо из-за других факторов напряжение может пойти через заземлитель в нулевой провод обратно в дом. В частных домах ноль заземляется в поселковых трансформаторных подстанциях. Может возникнуть случай, когда напряжение будет и на фазе, и на ноле, что также приведет к поломке приборов и техники. Но это редкий случай: как правило, ток, попадая в землю, равномерно растекается.

Важно! Самые страшные последствия — разрушение или возгорание кровли в результате прямых ударов молнии.

Виды молниезащиты

По исполнению системы защиты бывают:

У каждой системы свое предназначение, и применять их нужно в комплексе, чтобы исключить все три фактора поражения молнией.

Внешнее устройство молниезащиты зданий и сооружений монтируется на крышах, близлежащих пристройках, сооружениях и состоит из молниеприемника, токоотвода и заземлителя. Основная их функция — отвести разряд тока в землю, не дав ему попасть на поверхность крыши. Разряд через токоотвод попадает в заземлитель и дальше растекается в земле.

Внутренняя и внешняя молниезащита

Внутренний тип системы защиты от молний заключается в установке устройства внутри здания и служит для защиты от импульсных перенапряжений.

Бывают следующие виды внутренних устройств:

  1. Реле контроля напряжения с возможностью ручной регулировки минимальных и максимальных показателей напряжения в сети. В случае нарушения показателей критических точек прибор выполняет отключение напряжения. Может быть установлен на весь дом или отдельно на каждый прибор. Самый простой и дешевый вариант.
  2. Стабилизатор напряжения.
  3. Реле контроля фаз (при трехфазном напряжении). Относится к микропроцессорным приборам.

Виды молниеприемников

Молниеприемники по конструкции и материалу бывают:

  • стержневые — отдельно расположенные и на крыше;
  • тросовые;
  • сетчатые — на крыше.

Наиболее распространенные и часто встречаемые — стержневые и тросовые, которые применяются на простых и сложных двускатных крышах. Если строение крыши многоуровневое, рекомендуется использовать комбинированную систему с использованием двух разных видов приемников.

Стержневые молниеприемники

Главная особенность — длинный вертикальный штырь, основная функция которого — принять удар молнии. Прибор должен отличаться высокой прочностью, устойчивостью к осадкам и агрессивной среде, но быть легким и простым в монтаже.

Стержневой молниеприемник на крыше здания

В зависимости от площади крыши можно устанавливать несколько таких мачт. Такие конструкции нужно устанавливать на самую высокую точку крыши или стену. Необходимо, чтобы штырь возвышался не менее чем на 1,5 м.

Можно устанавливать такую систему и отдельно от жилья. Во втором случае мачта может достигать нескольких десятков метров. Стержневая конструкция образует вокруг жилья воображаемый конус — зону защищенного пространства. Размер мачты можно определить из диаметра конуса и его высоты.

Тросовые молниеприемники

Система горизонтального монтажа представляет натянутый стальной трос по всей длине конька. Удар молнии принимает на себя трос. Можно на разных концах крыши установить штыри и натянуть между ними трос, в результате чего получается комбинированный тип защиты. Это подходит крышам, у которых длина во много раз превышает ширину. Диаметр троса должен быть не менее 12 мм. Толщина троса определяется длиной монтажного пролета.

В системе есть особые требования к прочности натяжного элемента, что связано с ветровыми нагрузками и обледенением. Чтобы избежать повреждений системы, рекомендуется по всей длине крыши установить натяжение нескольких промежуточных креплений.

Тросовая молниезащита зданий

Экономичный и простой вариант получается с использованием вместо троса стальной катанки, которая легка в монтаже (можно приваривать к конструкциям и между собой) и достаточно прочна. Для крепления проволоки можно применять специальные болтовые зажимы — клеммы.

Сетчатые молниеприемники

Система горизонтальная, монтируется на плоских крышах. Сетка изготавливается из проволоки-катанки диаметром 10 мм или стальной полосы любого диаметра. Такие приемники монтируются с помощью сварки и требуют большого расхода материала, поэтому система считается очень трудоемкой в монтаже.

Ее можно устанавливать и на скатных крышах. В таком случае сетку монтируют по периметру плоскости. Это основная причина, по которой на скатных крышах устанавливают более дешевые, простые и безопасные при выполнении работ системы. Такой тип защиты подходит для монтажа на крышах школ и детских садов, институтов и государственных учреждений. Считается самым надежным.

Сетчатый молниеприемник на плоской крыше

Токоотводы

Этот элемент соединяет молниеприемник с заземлителем. Для изготовления применяют стальную проволоку диаметром 6 – 10 мм, подойдут и стальная полоса или полудюймовая водопроводная труба.

Очень важно сделать крепкое и надежное соединение между токоотводами и молниеприемниками с заземлителями. Самым крепким считается сварное или болтовое соединение. Чтобы токоотвод был незаметен на фасаде, его можно покрасить в цвет обшивки или отделки дома. По всей длине спуска необходимо на расстоянии 1,5 – 2 метра сделать промежуточные крепления.

Заземление

Устройство — металлическая конструкция, закопанная или забитая в землю и обеспечивающая хороший контакт системы с землей. При влажных почвах нет смысла оборудовать заземлитель глубже 80 см. Как правило, используют стальной пруток 18 – 20 мм либо уголок 40 – 50 мм, стальную полосу шириной 40 мм. Длина заземлителя должна быть не менее 3 метров.

Горизонтальный заземлитель по контуру здания

Конструкция может иметь форму треугольника либо напоминать перевернутую букву «Ш». Соединение элементов заземлителя проводится с помощью сварки либо болтовым скручиванием. Конструкция должна быть надежна на протяжении многих лет, не ослабевать и не иметь люфтов.

Важно! Если возле дома есть готовый контур заземления, грозозащита зданий может быть подключена к нему.

Монтаж молниезащиты

Монтаж стоит начать с обустройства молниеприемников. При выполнении работы на высоте соблюдайте правила безопасности. Если установку планируется выполнять самостоятельно, начните с примитивного проекта. Когда собираетесь подключаться к готовому контуру заземления, планируйте монтаж с учетом данного места подключения.

Всегда соблюдайте правило: токоотводы должны быть максимально короткими и прямыми. Выбираться самое кратчайшее расстояние от молниеприемника до заземлителя.

Монтаж системы молниезащиты здания

Обратите внимание! Если не уверены в своих силах, доверьте выполнение работ по монтажу молниезащиты объектов профессионалам. Специалисты выполнят проект и проведут предэксплуатационные испытания.

Испытание и проверка

Перед использованием молниезащиты необходимо проверить следующие элементы системы:

  1. Сварочные соединения на прочность. Проводится визуально или простукиванием молотком.
  2. Болтовые соединения и стяжки. Необходимо законтрогаить все соединения, особенно те, которые будут в земле или на крыше.
  3. Сопротивление заземлителя. Измеряется специальным прибором — измеритель сопротивления изоляции.
  4. Измеряются переходные сопротивления контактов и стыков измерителем сопротивления изоляции или омметром.
  5. Измерение сопротивления растекания тока измерителем сопротивления изоляции.
  6. Проверить на соответствие проектной документации.
  7. Надежность закрепления молниеприемника и промежуточных фиксаторов.

Рекомендуется перед весенне-летним периодом ежегодно проводить визуальную проверку системы на наличие повреждений и обрывов после зимних обледенений и ветров.

На защите от поражения электрическим током человека и безопасности жилья и электроприборов не стоит экономить средства. Лучший вариант — комплекс мер по предотвращению последствий и разрушений от попадания молний.

Оборудование для заземления и молниезащиты

Оборудование для заземления и молниезащиты

В этом разделе сайта ZANDZ.com представлены комплектующие и комплекты для организации надёжного заземления и молниезащиты на любом объекте.

1. Заземление

Модульное заземление

Модульное заземление

Готовые комплекты и отдельные комплектующие модульного заземления ZANDZ (пр. Россия) используются для организации простого и качественного заземления любой конфигурации и для любых целей. Подробнее — на отдельной странице.

Заземление в частном доме

Заземление в частном доме

ZANDZ «Заземление в частном доме» ZZ-6 (пр. Россия) — это готовый комплект и полная инструкция по заземлению на даче / загородном или частном доме. Доступность, надежность и простота в монтаже сделала этот комплект настоящим хитом продаж!
Подробнее — на отдельной странице.

Монтаж заземления

Монтаж заземления

Полная инструкция по установке модульного и электролитического заземления. Как подготовить объект к монтажу, какие инструменты использовать — смотрите на отдельной странице.

Сертификация

Сертификация

Сертификаты соответствия на комплекты и комплектующие для заземления ZANDZ и GALMAR представлены на странице.

Электролитическое заземление

Электролитическое заземление

Уникальные электролитические заземлители ZANDZ (пр. Россия) предназначены для организации долговечного заземления в грунтах с повышенным уровнем электрического сопротивления:

Оборудование GALMAR

Оборудование GALMAR

Огромный каталог комплектующих для заземления GALMAR: стержни, муфты, наконечники, головки, зажимы, насадки, ленты. Монтаж модульного заземления GALMAR не требует специальных навыков и техники — все комплектующие спрягаются без сварки.
Подробнее — на отдельной странице.

Читайте также  Устройство, принцип работы и схемы защитного заземления

Примеры применения и типовые решения

Примеры применения и типовые решения

Полезные советы по организации заземления на различных объектах. Можно ли производить монтаж заземления в зимнее время в трудном грунте? Как сделать многоэлектродное заземление на объекте мобильной связи?
Ответы на эти и другие вопросы смотрите на отдельной странице.

2. Проводники

Проволока омеднённая

Проволока применяется в качестве токоотводов или сетчатых молниеприёмников в системе внешней молниезащите, а также — в качестве горизонтального электрода заземления или заземляющего проводника.
Подробнее — на отдельной странице.

Проволока оцинкованная

Проволока омеднённая

В зависимости от диаметра, оцинкованная проволока применяется либо в системах внешней молниезащиты (диаметр 8 мм), либо в составе заземляющих устройств (10 мм). Средний срок службы таких систем — 5-10 лет.
Подробнее — на отдельной странице.

Проводник заземляющий в ПВХ изоляции

Проводник заземляющий в ПВХ изоляции

Большой выбор медных заземляющих проводников в ПВХ изоляции жёлто-зеленого цвета, использующихся для соединения заземлителя с заземляющей шиной:

Полоса омеднённая

Полоса омеднённая

Полоса используется при организации заземления как горизонтальный электрод заземления или заземляющий проводник с очень долгим сроком службы.
Подробнее — на отдельной странице.

Полоса оцинкованная

Полоса оцинкованная

Полоса оцинкованная применяется в качестве горизонтального электрода заземления/заземляющего проводника со сроком службы 5-10 лет.
Подробнее — на отдельной странице.

3. Молниезащита

Внешняя молниезащита. Элементы

Элементы внешней молниезащиты

Из каких компонентов состоит система внешней молниезащиты? Какие функции они выполняют и какого вида бывают?
Смотрите ответы на эти вопросы на отдельной странице.

Грозоизолятор

Грозоизолятор

Грозоизолятор — система внешней молниезащиты, препядствующая формированию условий для прямого удара молнии в защищаемый объект:

Система предупреждения о молнии

Система Thor

THOR GUARD это система предупреждения о молнии, разработанная и производящаяся в США. В базовом варианте система состоит из гиперстатичного датчика, располагаемого в зоне открытой видимости неба (например, на крыше здания), и базового блока, находящегося внутри здания (не дальше 60 метров от гиперстатичного датчика).
Подробнее — на отдельной странице.

Высотная тросовая молниезащита

Высотная тросовая молниезащита ZANDZ

Высотная тросовая молниезащита (пр. Россия ) – это система внешней молниезащиты, в которой в качестве молниеприёмника выступает трос, подвешенный над защищаемым объектом на специальных опорах. Такая система не только надежнее защищает объект по сравнению с системой стержневых молниеприёмников, но и позволяет минимизировать вторичные воздействия молнии.
Подробнее — на отдельной странице.

Молниеприёмники — мачты и держатели

Молниеприёмники

Молниеприёмники — основной элемент в системе внешней молниезащиты, принимаемый на себя удар молнии. Традиционный направленный в небо молниеприёмник в виде заострённого штыря называют молниеприёмником-мачтой.
Все виды молниеприёмников, а также держателей для них, представлены на странице.

Токоотводы

Токоотводы

Токоотводы — это компоненты внешней молниезащиты, которые передают ток молнии от молниеприёмников на заземляющее устройство. Токоотводы имеют достаточную толщину для того, чтобы выдержать нагрев и передачу тока молнии больших величин.
Подробнее — на отдельной странице.

Зажимы для токоотводов

Зажимы для токоотводов

Зажимы для токоотводов — вспомогательные компоненты в системе внешней молниезащиты, предназначенные для крепления токоотводов к элементам фасада строения: крыше, стенам, водосточным трубам и пр.
Большой выбор зажим представлен на отдельной странице.

Активные молниеприёмники

Активные молниеприёмники реагирует на рост напряженности электромагнитного поля, возникающий при приближении грозового фронта и выпускают «искусственный» восходящий лидер, тем самым принимая удар на себя.
Подробнее о активной молниезащите и молниеприёмниках читайте на отдельной странице.

4. Защита от перенапряжений (УЗИП)

Защита от импульсных перенапряжений

Защита от перенапряжений

Устройства защиты от импульсных перенапряжений (УЗИП) – эффективное решение в борьбе как с атмосферными, так и с промышленными перенапряжениями.
Полное описание устройств и их функций смотрите на отдельной странице.

Защита от импульсных перенапряжений в слаботочных цепях

Защита от импульсных перенапряжений в слаботочных цепях

Каталог УЗИПов, применяемых в телекоммуникационных системах, а так же в сетях автоматизации, управления, измерения и контроля.

Принципы подбора УЗИПов

Подбор УЗИПов

Полная инструкция по подбору ограничителей классов I, II, III в низковольтных электрических сетях на примере устройств LEUTRON. В инструкции представлены типовые решения многоступенчатых систем ограничения перенапряжений. Подробнее — на отдельной странице.

Защита от импульсных перенапряжений в цепях питания

Защита от импульсных перенапряжений в цепях питания

Каталог специализированных УЗИПов LEUTRON для защиты от перенапряжений в сети переменного и постоянного тока представлен в следующих типах:

Решения LEUTRON и RST для защиты различных систем

Решения LEUTRON и RST для защиты различных систем

Комплекты защиты от импульсных перенапряжений для низковольтных источников питания (переменного и постоянного тока), а также для сигнальных линий (телекоммуникации, радио, управления, автоматики и измерений):

5. Устройства энергосберегающие

Качество электроэнергии

Качество электроэнергии – это степень соответствия её параметров определенным номинальным значениям. Под параметрами электрической энергии сегодня понимают не только напряжение питания и частоту, но и форму кривой напряжения, его одинаковость по фазам (симметрию), наличие электромагнитных помех в сети.
Проблема качества электрической энергии на сегодняшний день является одной из самых актуальных в электроэнергетике.
Подробнее — на отдельной странице.

Модельный ряд УЭС

Модельный ряд

Выбор моделей УЭС ГРИН ЭНЕРДЖИ производится на основании данных полученных от Заказчика и/или предварительного мониторинга на объекте. Модельный ряд УЭС:

Отраслевые решения

Полоса омеднённая

Примеры применения УЭС ГРИН ЭНЕРДЖИ на объектах различных отраслей.

6. Экзотермическа сварка

Экзотермическая / термитная сварка

Экзотермическая / термитная сварка

— это сварка деталей расплавленным металлом, образованным в ходе химической реакции, сопровождающейся высокой температурой (большим количеством тепла).
Подробнее — на отдельной странице.

Готовые комплекты для сварки ZANDZ

Экзотермическая сварка ZANDZ

Готовые комплекты для экзотермической сварки ZANDZ представляют из себя наборы оборудования и расходных материалов, необходимых для выполнения того или иного типа соединения.
Подробнее — на отдельной странице.

Молниезащита зданий и сооружений

pravila molniezaschity zdaniy i sooruzheniy

Для того чтобы до конца понять всю опасность ударов молнии, необходимо более подробно ознакомиться с ее поражающими факторами. Они в обязательном порядке учитываются, когда проектируется устройство молниезащиты зданий и сооружений. В момент разряда подавляющее число грозовых туч обладают отрицательной полярностью, тогда как на земле происходит индукция положительных зарядов.

В среднем, каждое облако перед началом разряда обладает следующими характеристиками:

  • Возле поверхности земли туча имеет напряженность электрического поля в диапазоне 5-300 кВ/м.
  • Потенциал составляет от 100 миллионов до 1 миллиарда вольт.
  • Единичный разряд тучи происходит в промежутке от 15х10-6 до 10-3 секунды, для полного разряда требуется 1,13 секунды.
  • Непосредственно в канале молнии образуется температура 20 тысяч градусов и более.
  • Величина амплитудного значения тока составляет 50 кА, в некоторых случаях – до 250 кА.

Действие электрических разрядов может быть первичным или вторичным в зависимости от поражающих факторов. Они учитываются, когда создается система молниезащиты зданий. Первичный поражающий фактор является прямым ударом молнии в конкретный объект. Основными последствиями считаются пожары и механические повреждения зданий и сооружений.

Вторичные поражающие факторы, которых существует несколько видов, проявляются в следующем:

  • Электростатическая индукция. На металлических конструкциях, изолированных от земли, возникают наведенные электрические потенциалы. Их появление связано со статическим полем высокой напряженности между грозовыми тучами и землей. В результате, между деталями оборудования и металлическими конструкциями наблюдается искрение.
  • Электромагнитная индукция. На металлических трубах, воздуховодах и других элементах большой протяженности, обладающих незамкнутыми контурами, в момент разряда происходит индуцирование ЭДС. Данное явление возникает под действием мощного магнитного поля, изменяющегося во времени. Как следствие, здесь также образуется искрение в местах максимально близкого взаимного расположения металлических конструкций.
  • Высокие потенциалы, которые могут попасть в здание по коммуникациям и металлическим конструкциям, находящимся вне объекта. Все это нужно учитывать при строительстве еще на стадии проектирования.

Все виды поражающих факторов вызывают те или иные негативные последствия. В первую очередь, это поражение людей электротоком, пожары, взрывы, разрушения вследствие механических повреждений. Все это приводит к значительному материальному ущербу и невосполнимым потерям.

Особенности защиты городских объектов

Система молниезащиты любых городских сооружений (включая жилые многоквартирные дома) может иметь самые различные исполнения. Выбор того или иного варианта защитной конструкции, как правило, определяется следующими факторами:

  • конструктивные особенности самого защищаемого строения;
  • наличие электрооборудования, размещённого на открытых и закрытых пространствах здания, а также его уязвимость с точки зрения грозового удара;
  • качество используемого в системе защиты заземления;
  • показатель грозовой активности, характерный для данной местности.

Помимо этого требования к молниезащите таких строений должны удовлетворять действующим стандартам, которые предполагают деление их с точки зрения защищённости на различные категории.

Эти категории учитывают наличие в этих строениях и характер хранения или переработки взрывоопасных и горючих веществ. При этом самой опасной с точки зрения поражения молнией считается 1-я категория, а наиболее безопасной – третья.

Немаловажным фактором, оказывающим существенное влияние на выбор молниезащиты для городского объекта, является его «окружение», которое может включать и высотные объекты (трубы котельных, местные телевизионные башни и тому подобное).

С учётом всех приведённых выше факторов и организуется грозозащита типовых городских объектов, включая многоквартирные дома и промышленные предприятия.

Заземлители

1.7.109. В качестве естественных заземлителей могут быть использованы:

1) металлические и железобетонные конструкции зданий и сооружений, находящиеся в соприкосновении с землей, в том числе железобетонные фундаменты зданий и сооружений, имеющие защитные гидроизоляционные покрытия в неагрессивных, слабоагрессивных и среднеагрессивных средах;

2) металлические трубы водопровода, проложенные в земле;

3) обсадные трубы буровых скважин;

4) металлические шпунты гидротехнических сооружений, водоводы, закладные части затворов и т.п.;

5) рельсовые пути магистральных неэлектрифицированных и железных дорог и подъездные пути при наличии преднамеренного устройства перемычек между рельсами;

6) другие находящиеся в земле металлические конструкции сооружения;

7) металлические оболочки бронированных кабелей, проложенных в земле. Оболочки кабелей могут служить единственными заземлителями при количестве кабелей не менее двух. Алюминиевые оболочки кабелей использовать в качестве заземлителей не допускается.

1.7.110. Не допускается использовать в качестве заземлителей трубопроводы горючих жидкостей, горючих или взрывоопасных газов и смесей и трубопроводов канализации и центрального отопления. Указанные ограничения не исключают необходимости присоединения таких трубопроводов к заземляющему устройству с целью уравнивания потенциалов в соответствии с 1.7.82.

Не следует использовать в качестве заземлителей железобетонные конструкции зданий и сооружений с предварительно напряженной арматурой, однако это ограничение не распространяется на опоры ВЛ и опорные конструкции ОРУ.

Возможность использования естественных заземлителей по условию плотности протекающих по ним токов, необходимость сварки арматурных стержней железобетонных фундаментов и конструкций, приварки анкерных болтов стальных колонн к арматурным стержням железобетонных фундаментов, а также возможность пользования фундаментов в сильноагрессивных средах должны быть определены расчетом.

1.7.111. Искусственные заземлители могут быть из черной или оцинкованной стали или медными.

Искусственные заземлители не должны иметь окраски.

Материал и наименьшие размеры заземлителей должны соответствовать приведенным в табл.1.7.4.

1.7.112. Сечение горизонтальных заземлителей для электроустановок напряжением выше 1 кВ следует выбирать по условию термической стойкости при допустимой температуре нагрева 400 °С (кратковременный нагрев, соответствующий времени действия защиты и отключения выключателя).

Читайте также  Информационное заземление

В случае опасности коррозии заземляющих устройств следует выполнить одно из следующих мероприятий:

увеличить сечения заземлителей и заземляющих проводников с учетом расчетного срока их службы;

применить заземлители и заземляющие проводники с гальваническим покрытием или медные.

При этом следует учитывать возможное увеличение сопротивления заземляющих устройств, обусловленное коррозией.

Траншеи для горизонтальных заземлителей должны заполняться однородным грунтом, не содержащим щебня и строительного мусора.

Не следует располагать (использовать) заземлители в местах, где земля подсушивается под действием тепла трубопроводов и т.п.

Правила заземления трубопроводов

Заземление трубопроводов – мероприятие обязательное, закрепленное в ПУЭ. Именно таким образом можно повысить безопасность их эксплуатации, ведь в трубных системах скапливается статическое электричество, плюс всегда есть вероятность попадания молнии в трубы. Требования правил устройства электроустановок обеспечить заземлением не только трубопроводы внешние, но и внутренние (технологические и коммуникационные).

В ПУЭ четко регламентировано, как должно проводиться заземление трубопроводов.

  • Во-первых, система труб должна быть единой непрерывной сетью, соединяемой в единый контур.
  • Во-вторых, к заземляющей системе трубопроводы должны быть подключены минимум в двух точках.

8324f251075dfd5f827f8a0a6345f80c

Что касается первой позиции, то это не значит, что сама трубопроводная система должна быть непрерывной. Здесь будет достаточно обеспечить соединение участков или отдельных трубопроводов в одну единую сеть, для чего чаще всего используются так называемые межфланцевые перемычки. По сути, это обычный медный провод марки или ПВЗ, или ПуГВ. Крепление перемычек к трубопроводу обеспечивается сваркой, болтовым соединением или устанавливается хомут заземления для труб.

Что касается второй позиции, то специалисты рекомендуют не разбрасываться по всей линии технологической цепочки, просто провести соединение в начале и конце контура.

Активная и пассивная молниезащита

Разные типы внешней молниезащиты представляют собой систему, состоящую из токопроводящих конструкций, часть которых устанавливается в верхней части объектов. Они перехватывают разряд молнии, а затем отводят в землю ее высокую энергию. Эффект от подобной защиты зависит от количества компонентов и плотности покрытия опасной зоны, от архитектурных особенностей конкретного здания. Все процессы здесь происходят естественным путем, поэтому такие стандартные системы представляют собой пассивную молниезащиту.

Как правило, она включает в себя следующие компоненты:

  • Молниеприемник. Притягивает к себе и принимает электростатический атмосферный разряд. Конструктивно варианты исполнения бывают в виде металлических стержней, тросов, натянутых между опорами или приемной сетки с установленным шагом ячейки. Последний вариант используется в основном на плоских крышах с большими площадями.
  • Токоотводы. Находятся вроде бы на второстепенных ролях, однако без них совершенно невозможно отведение высоких токов, попавших в молниеприемник. Они изготавливаются из толстой стальной проволоки, диаметром от 8 мм и более. Такое сечение обеспечивает безопасное прохождение большого потенциала в течение короткого промежутка времени.
  • Заземление и молниезащита. Используются в совместном виде и состоят из отдельных заземлителей или целой системы, объединяющей сразу несколько электродов в единый контур заземления. Токоотводы могут подключаться к уже действующему заземлению, но для этого в цепь потребуется подключить специальные разрядники.

Активная защита определяется ГОСТ и существенно отличается от пассивной, в первую очередь наличием в ней активного молниеприемника, представляющего собой не стержень, а специальное электронное устройство с возможностью самостоятельной активации непосредственно перед наступлением грозы. Поля статического электричества, возникающие во время грозы, воздействуют на головку приемника и способствуют возникновению импульсов высокого напряжения. Под их влиянием в окружающем воздушном пространстве создается обратная ионизация, вызывающая эффект притягивания электрических разрядов.

Монтаж активного компонента осуществляется на металлическом стержне, превышающем наиболее высокую точку здания не менее чем на 1 метр. Все остальные компоненты устанавливаются и работают практически одинаково, как и на пассивной защите.

Виды материала (профили)

Согласно требованиям ПУЭ, содержащим указания на то, каким должно быть сопротивление растекания тока в грунте, в большинстве случаев этот показатель устанавливается на уровне не более 4 Ом. Для получения этого значения обычно приходится приложить немало усилий, направленных на то, чтобы придерживаться заданных теми же требованиями технологий.

В первую очередь, это касается используемых при сборке заземляющего контура материалов, подбираемых, исходя из следующих условий:

  • При выборе штырей предпочтение должно отдаваться заготовкам из черного металла;
  • Наиболее часто применяется пруток типоразмером 16-20 мм или уголок с параметрами 50х50х5 мм и толщиной металла около 5 мм;
  • Применять в качестве элементов контура арматуру не допускается, поскольку она обладает каленой поверхностью, влияющей на нормальное стекание тока;
  • Для этих целей подходит именно чистый пруток, а не его арматурный заменитель.

Обратите внимание! Для районов с засушливым летом лучше всего подходят трубные толстостенные металлические заготовки, нижний конец которых сплющивается на конус, а затем в этой части трубы просверливаются несколько отверстий. Согласно положениям ПУЭ, перед их размещением в грунте сначала бурятся лунки нужной длины, поскольку забить их вручную достаточно проблематично

В случае особо засушливого лета и резком ухудшении параметров заземлителя в полые части труб заливается концентрированный соляной раствор, что позволяет получить такое сопротивление, какое должно быть в соответствии с требованиями ПУЭ. Длина трубных заготовок выбирается в пределах 2,5-3 метра, что вполне хватает для большинства российских регионов

Согласно положениям ПУЭ, перед их размещением в грунте сначала бурятся лунки нужной длины, поскольку забить их вручную достаточно проблематично. В случае особо засушливого лета и резком ухудшении параметров заземлителя в полые части труб заливается концентрированный соляной раствор, что позволяет получить такое сопротивление, какое должно быть в соответствии с требованиями ПУЭ. Длина трубных заготовок выбирается в пределах 2,5-3 метра, что вполне хватает для большинства российских регионов.

К этому виду профильных заготовок предъявляются особые требования, касающиеся порядка их размещения в почве и состоящие в следующем:

  • Во-первых, трубные элементы защитного контура должны размещаться на глубине, превышающей уровень промерзания грунта не менее чем на 80-100 см;
  • Во-вторых, в особо засушливых местностях примерно треть длины заземлителя должна достигать влажных слоёв почвы;
  • В-третьих, при выполнении второго условия следует ориентироваться на особенности расположения в данном регионе так называемых «грунтовых вод». В случае если они находятся на значительной глубине, по правилу, сформулированному в положениях ПУЭ, необходимо будет подготовить более длинные трубные отрезки.

С видом и профилем используемых при обустройстве заземлителя штыревых заготовок можно ознакомиться на размещённом ниже рисунке.

На практике в большинстве регионов России обычно применяются стальной уголок и полоса из того же металла. Для того чтобы получить более точные параметры используемых элементов заземления, потребуются данные геологических обследований. При наличии этой информации можно будет привлечь к обсчёту параметров заземлителя специалистов.

Из чего делается металлосвязь

Соединяющие штыри элементы (металлосвязь) обычно изготавливается из следующих электротехнических материалов:

  • Типовая медная шина, имеющая сечение на менее 10 мм2;
  • Алюминиевая полоса с поперечным сечением порядка 16 мм2;
  • Стальная полоска 100 мм2 (типоразмер – 25х5 мм).

Классическая металлосвязь делается обычно в виде нарезанных по размеру стальных полос, крепящихся на сварку к уголкам или оголовкам прутка.

Важно! От качества сварочного сочленения зависит, сможет ли данное заземляющее устройство или контур пройти проверочные испытания на соответствие переходного сопротивления нормируемому значению (4 Ома)

При применении более дорогих алюминиевых (медных) полосок к ним на сварку крепится болт подходящего типоразмера, на котором впоследствии фиксируются подводящие шины

Главное, на что нужно обращать внимание при обустройстве любых соединений, – это надёжность получаемого в результате контакта

Для этого перед оформлением болтового сочленения необходимо тщательно зачистить обе соединяемые детали до появления блеска чистого металла. Дополнительно эти места желательно обработать шкуркой, а после закручивания болта хорошо его поджать, что обеспечит более надёжный контакт.

Установка токоотводов молниезащиты

Любая молниезащита не будет нормально работать при отсутствии токоотводов и их правильного размещения относительно друг друга. Именно по ним электрический ток уходит от приемника и, попадая в заземлитель, растекается в грунте. Существуют нормативные документы, определяющие количество и материал токоотводов, их оптимальное сечение и расстояния между линиями. Все эти данные используются при составлении проектов молниезащиты.

Установленный токоотвод должен обеспечивать следующие требования:

  • После удара молнии течение тока к земле должно происходить несколькими путями, расположенными параллельно.
  • Движение тока осуществляется по кратчайшему пути. Токоотвод устанавливается в прямом вертикальном положении, исключая любые петли и резкие повороты.
  • Расстояния от токоотводов до окон и дверей должны обеспечивать требуемый уровень безопасности.

Количество токоведущих линий определяется прежде всего размерами здания и типом его кровли. Если периметр объекта составляет менее 20 метров, то вполне достаточно одного токоотвода. При использовании нескольких элементов, они распределяются равномерно по всему периметру, начиная от любого угла.

Простейшая грозозащита состоит из двух токоотводов, расположенных параллельно и равномерно отводящих большие токи к земле. Они прокладываются по прямой, без изгибов и острых углов, чтобы исключить искрение, представляющее серьезную опасность. Общая численность линий рассчитывается для каждого конкретного случая, минимальное расстояние составляет 10 м. Расстояние от окон и дверей должно быть не менее 50 см.

Если монтаж молниезащиты, в частности, токоотводов выполняется непосредственно по стенам, в этом случае необходимо соблюдать установленные правила и рекомендации специалистов:

  • Огнестойкий материал стен позволяет крепить проводники к их поверхностям или прокладывать изнутри.
  • Если же стены неустойчивы к высоким температурам, токоотводы закрепляются на поверхности с соблюдением установленных зазоров и других мер безопасности.
  • Прокладка по горючим материалам стен выполняется на расстоянии свыше 100 мм от поверхности. Допускается лишь контакт металлических креплений со стеной.
  • Нельзя использовать водостоки под прокладку токоотводов.
  • Непосредственно перед землей все линии соединяются между собой по горизонтали при помощи специальных поясов. По высоте такие соединения выполняются через каждые 20 метров.

Испытание и проверка

  1. Сварочные соединения на прочность. Проводится визуально или простукиванием молотком.
  2. Болтовые соединения и стяжки. Необходимо законтрогаить все соединения, особенно те, которые будут в земле или на крыше.
  3. Сопротивление заземлителя. Измеряется специальным прибором — измеритель сопротивления изоляции.
  4. Измеряются переходные сопротивления контактов и стыков измерителем сопротивления изоляции или омметром.
  5. Измерение сопротивления растекания тока измерителем сопротивления изоляции.
  6. Проверить на соответствие проектной документации.
  7. Надежность закрепления молниеприемника и промежуточных фиксаторов.

Рекомендуется перед весенне-летним периодом ежегодно проводить визуальную проверку системы на наличие повреждений и обрывов после зимних обледенений и ветров.

На защите от поражения электрическим током человека и безопасности жилья и электроприборов не стоит экономить средства. Лучший вариант — комплекс мер по предотвращению последствий и разрушений от попадания молний.

Рд 34.21.122-87 — инструкция по устройству молниезащиты зданий и сооружений

ИНСТРУКЦИЯ ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ

РД 34.21.122-87

Москва ГНИЭИ им. Кржижановского, 1987 г.

Москва ГОСЭНЕРГОНАДЗОР 1995 г.

Смотри Разъяснение Управления по надзору в электроэнергетике Ростехнадзора о совместном применении «Инструкции по молниезащите зданий и сооружений» (РД 34.21.122-87) и «Инструкции по молниезащите зданий, сооружений и промышленных коммуникаций» (СО 153-34.21.122-2003)

Читайте также  Переносное заземление – устройство, установка, испытания

Разработчик Государственный научно-исследовательский энергетический институт им. Г.М. Кржижановского

Инструкция по устройству молниезащиты зданий и сооружений. РД 34.21.122-87

Инструкция устанавливает комплекс мероприятий и устройств для обеспечения безопасности людей (сельскохозяйственных животных), предохранения зданий, сооружений, оборудования и материалов от взрывов, пожаров, разрушений при воздействии молнии. Инструкция обязательна для всех министерств и ведомств.

Предназначена для специалистов, проектирующих здания и сооружения.

ПРЕДИСЛОВИЕ

Требования настоящей Инструкции обязательны для выполнения всеми министерствами и ведомствами.

Инструкция должна соблюдаться при разработке проектов зданий и сооружений.

Инструкция не распространяется на проектирование и устройство молниезащиты линий электропередачи, электрической части электростанций и подстанций, контактных сетей, радио- и телевизионных антенн, телеграфных, телефонных и радиотрансляционных линий, а также зданий и сооружений, эксплуатация которых связана с применением, производством или хранением пороха и взрывчатых веществ.

Настоящая Инструкция регламентирует мероприятия по молниезащите, выполняемые при строительстве, и не исключает использования дополнительных средств молниезащиты внутри здания и сооружения при проведении реконструкции или установке дополнительного технологического или электрического оборудования.

При разработке проектов зданий и сооружений помимо требований Инструкции должны быть учтены требования к выполнению молниезащиты других действующих норм, правил, инструкций, государственных стандартов.

С введением в действие настоящей Инструкции утрачивает силу «Инструкция по проектированию и устройству молниезащиты зданий и сооружений» СН 305-77.

ИНСТРУКЦИЯ ПО УСТРОЙСТВУ МОЛНИЕЗАЩИТЫ ЗДАНИЙ И СООРУЖЕНИЙ (РД 34.21.122-87)1

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. В соответствии с назначением зданий и сооружений необходимость выполнения молниезащиты и ее категория, а при использовании стержневых и тросовых молниеотводов — тип зоны защиты определяются по табл. 1 в зависимости от среднегодовой продолжительности гроз в месте нахождения здания или сооружения, а также от ожидаемого количества поражений его молнией в год. Устройство молниезащиты обязательно при одновременном выполнении условий, записанных в графах 3 и 4 табл. 1.

Оценка среднегодовой продолжительности гроз и ожидаемого количества поражений молнией зданий или сооружений производится согласно приложению 2; построение зон защиты различных типов — согласно приложению 3.

1 Настоящая Инструкция разработана Государственным научно-исследовательским энергетическим институтом им. Г.М. Кржижановского Минэнерго СССР, согласована с Госстроем СССР (письмо № АЧ-3945-8 от 30 июля 1987 г.) и утверждена Главтехуправлением Минэнерго СССР. С введением в действие настоящей Инструкции утрачивает силу «Инструкция по проектированию и устройству молниезащиты зданий и сооружений» СН 305-77.

№ пп.Здания и сооруженияМестоположениеТип зоны защиты при использовании стержневых и тросовых молниеотводовКатегория молниезащиты
12345
1Здания и сооружения или их части, помещения которых согласно ПУЭ относятся к зонам классов В-I и В-IIНа всей территории СССРАI
2То же классов В-Iа, В-Iб, В-IIаВ местностях со средней продолжительностью гроз 10 ч в год и болееПри ожидаемом количестве поражений молнией в год здания или сооружения N

Для цветового и цифрового обозначения отдельных изолированных или неизолированных проводников должны быть использованы цвета и цифры в соответствии с ГОСТ Р 50462 “Идентификация проводников по цветам или цифровым обозначениям”.

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в т.ч. шины, должны иметь буквенное обозначение PE и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов.

Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Устройство заземления молниезащиты

Заземляющие контуры располагаются на расстоянии не менее 1 метра от самого объекта, дорожек и прочих мест частого появления людей. Данное требование позволяет избежать шагового напряжения, возникающего в процессе растекания заряда по грунту.

При наличии у объекта массивного железобетонного фундамента, заземление должно располагаться еще дальше, а внутри здания устанавливаются грозоразрядники, защищающие электронную аппаратуру. Это требование обязательно для выполнения, поскольку часть заряда молнии попадает на фундамент и другие элементы, контактирующие с ним – инженерные сети, корпуса оборудования.

Основным показателем заземления является его сопротивление. Если используются два отдельных контура, они соединяются между собой стальными проводниками при помощи сварки. Показатель сопротивления контура должен быть минимальным, чтобы ток мог легко уходить в землю. Если удельное сопротивление грунта 500 Ом, то нормативное сопротивление заземлителя составит 10 Ом. При более высоких сопротивлениях грунта для вычислений применяется формула: Rз = 10 + 0,0022 (ρ – 500) Ом, где Rз – сопротивление заземлителя, ρ – показатель удельного сопротивления грунта.

Нормативные значения можно получить путем замены грунта. Старый грунт убирается, а в яму или траншею закладывается земля с другими параметрами и характеристиками. После этого в обновленном грунте выполняется монтаж заземления. В другом случае в грунт добавляются химические реагенты, способные изменить его показатели в нужную сторону.

После того как заземление установлено, в дальнейшем проводятся регулярные замеры его сопротивления. Если его показатели выходят за пределы нормативного диапазона, следует выполнить установку дополнительного штыря или заменить несоответствующий элемент

Особое внимание обращается на соединения между всеми компонентами заземляющего устройства

Применение системы TN-С

Эта система заземления была и остается самой распространенной в стране. При такой системе на подстанции заземляется нейтраль трансформатора. Нулевой проводник присоединяется к заземленной нейтрали на подстанции. В этом случае нулевой проводник выполняет функции рабочего и защитного проводников и называется РЕN-проводником.

f431fafa20563f8679f02378e8252e46

Электропитание электроустановок осуществляется двумя жилами при однофазном питании или четырьмя жилами при трехфазном питании. При применении системы TN-С в электророзетках отсутствует заземляющий контакт, а корпуса всех промышленных электроприборов и электроустановок на производстве зануляются.

Недостаток системы в угрозе поражения электрическим током при обрыве нулевого проводника. Достоинство — недорогой электромонтаж. По правилам устройства электроустановок на смену системе TN-C пришли другие, более безопасные системы — TN-S и TN-C-S.

Что такое молниезащита зданий и сооружений

Коротко это комплекс действий и мероприятий, а также различные защитные приспособления для предотвращения аварий и возгораний в зданиях и сооружениях жилого и промышленного назначения при попадании в них молний.

Мероприятия по молниезащите подразделяются на внешние и внутренние. Внешняя защита состоит из устройств, которые перехватывают электрозаряд от молнии и направляют его в землю по специальным токоотводным каналам. Такие конструкции, смонтированные в соответствии с обязательными техническими правилами по молниезащите, надежно предохраняют строения и людей внутри них от поражения.

Внешние мероприятия по молниезащите зданий и сооружений делятся на активные и пассивные.

Пассивная защита представлена в следующих вариантах

молниеприемная сетка из стальных прутков или катанки, ее применение разрешают все нормативы по молниезащите, хотя при малых превышениях сетка не в состоянии защитить поверхность кровли достаточно надежно;

549b975dea5870c8f55706cdd5884a74

Пространственная сетка на крыше здания

  • металлические прутья (от одного до нескольких штук) для приема разрядов молний, специальный кабель связывает их и заземляющие контуры- молниеотводы;
  • молниепринимающие металлические тросы.

Все приспособления внешней молниезащиты имеют один стандарт и состоят из трех основных частей: перехватчика электроразряда из грозового облака – молниеприёмника; конструктивной части, проводящей электричество на заземлители, и заземляющего элемента, который выводит молниевый заряд в почву.

Внутренний комплекс мероприятий по молниезащите направлен на предотвращение вреда, который может получить электрооборудование от резкого скачка напряжения в сети в результате удара молнии. Исполнение внутренней молниезащиты представлено двумя типами: 1 – противостояние прямому удару молнии, 2 – противостояние непрямому удару, прошедшему вблизи зданий/сооружений.

Со вторичным воздействием молниевого разряда в виде высоких потенциалов внутри строений борются с помощью грамотной организации заземления. Электромагнитную индукцию в длинных железных конструкциях снимают с помощью установки перемычек из металла. Занос высоких электропотенциалов через вводы для коммуникаций предотвращают вентильными разрядниками и специальными искровыми прерывателями, которые срабатывают при резком скачке напряжения.

001fc90808e508f9ce73cd6679d2d8f8

Вентильный разрядник РВН 0,5

Также проблема решается запрещением ввода воздушных линий для некоторых категорий сооружений и заменой их подземными кабельными вводами.

По каким критериям разделяются уровни молниезащиты?

Молния представляет большую опасность для любого объекта. Ее воздействие может нанести значительный урон и имуществу, и людям, которые пребывают в сооружении. Именно поэтому важным условием становится обеспечение безопасности здания.

В зависимости от назначения объекта и его особенностей определяются и уровни молниезащиты.

На сегодняшний день предусмотрено три категории. В соответствии с Правилами устройства электроустановок (ПУЭ) важным условием становится фактор огнестойкости сооружения и класс зон помещений и наружных строений. Также одна из категорий применяется в зависимости от вероятности поражения грозой.

Молниезащита 1, 2, 3 категории

Так, молниезащита 1 категории применяется в случае с промышленными сооружениями, имеющими взрывоопасные зоны (помещения), относящиеся к классам В-Iи В-II. При этом не имеет значения место расположения объекта и интенсивность воздействия грозы. Тип зоны защиты здания обеспечивается посредством перехвата на пути к сооружению прямого удара молнии.

В данном случае устройство молниезащиты предполагает установку отдельно стоящих стержневых или тросовых отводов. Характерные особенности следующие:

  • импульсное сопротивление не должно превышать 10 Ом;
  • защита от электростатической индукции обеспечивается посредством монтажа заземлителя;
  • дополнительно устраиваются металлические перемычки за счет сварки или пайки;
  • сопротивление заземлителя также не должно превышать 10 Ом;
  • подземная прокладка коммуникаций и их заземление исключает заносы высоких потенциалов.

Грозозащита 2 категории применяется для производственных объектов. Сюда относятся классы B-Ia, B-I6 и В-IIа. Такая система устанавливается в местности, где молния имеет среднюю продолжительность 10 часов в год и более. Устройство коммуникации выполняется двумя способами – отдельно стоящими грозоотводами или посредством наложения специальной сетки на кровлю, которая должна быть выполнена не из металла. При этом молниезащита коттеджа, дома или любого другого объекта предполагает:

  • сопротивление не более 10 Ом;
  • объединение заземляющих элементов защиты от атмосферного электричества с приспособлениями электроустановок;
  • использование конструкций из металла.

Молниезащита 3 категории заключается в обеспечении безопасности объектов классов П-I, П-II, П-IIа, которые располагаются на местности, где средняя продолжительность воздействия грозы 20 часов в год и более. В данном случае устройство выполняется, как и в ситуации со 2-ой категорией. Единственное отличие – импульсное сопротивление не должно превышать 20 Ом. В случае с башнями, трубами и вышками из металла – 50 Ом.

Все категории молниезащиты зданий и сооружений предполагают соблюдение установленных норм и стандартов. Это гарантия не только бесперебойного функционирования, но и максимальной безопасности.

Почему стоит обратиться к профессионалам?

Монтаж такой системы требует тщательного и ответственного подхода. Любые неточности или ошибки могут привести к плачевным последствиям. Молниезащита 1, 2, 3 категории, выполненная квалифицированными специалистами, – это гарантия:

  • длительного и бесперебойного функционирования;
  • максимального уровня безопасности;
  • надежности;
  • доступной стоимости;
  • выполнения поставленной задачи за короткое время;
  • профессионального определения уровня молниезащиты;
  • оперативного и грамотного монтажа системы.

Поиск альтернативного решения и максимальное качество – основные преимущества обращения к специалистам.

ЭЛЕКТРИЧЕСКИЕ МАШИНЫ

7.4.15. В пожароопасных зонах любого класса могут применяться электрические машины с классами напряжения до 10 кВ при условии, что их оболочки имеют степень защиты по ГОСТ 17494-72* не менее указанной в табл. 7.4.1.

В пожароопасных зонах любого класса могут применяться электрические машины, продуваемые чистым воздухом с вентиляцией по замкнутому или разомкнутому циклу. При вентиляции по замкнутому циклу в системе вентиляции должно быть предусмотрено устройство для компенсации потерь воздуха и создания избыточного давления в машинах и воздуховодах.

Допускается изменять степень защиты оболочки от проникновения воды (2-я цифра обозначения) в зависимости от условий среды, в которой машины устанавливаются.

До освоения электропромышленностью крупных синхронных машин, машин постоянного тока и статических преобразовательных агрегатов в оболочке со степенью зашиты IP44 допускается применять в пожароопасных зонах класса П-IIа машины и агрегаты со степенью защиты оболочки не менее IP20.

7.4.16. Воздух для вентиляции электрических машин не должен содержать паров и пыли горючих веществ. Выброс отработавшего воздуха при разомкнутом цикле вентиляции в пожароопасную зону не допускается.

Источник https://220.guru/electroprovodka/zazemlenie-molniezashhita/zashhita-ot-molnij-zdanij-i-sooruzhenij.html

Источник https://zandz.com/ru/oborudovanie/

Источник https://encom74.ru/o-molniezasite-zdanij-i-sooruzenij-ustrojstvo-zazemlenia-po-snip-trebovania-pue-i-gost/

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: