Мой самодельный ветрогенератор на шаговом двигателе. Мой самодельный ветрогенератор на шаговом двигателе Процесс изготовления генератора

 

Содержание

Мой самодельный ветрогенератор на шаговом двигателе

Проезжая на велосипеде мимо дачных участков, я увидел работающий ветрогенератор:

Большие лопасти медленно, но верно вращались, флюгер ориентировал устройство по направлению ветра.
Мне захотелось реализовать подобную конструкцию, пусть и не способную вырабатывать мощность, достаточную для обеспечения «серьезных» потребителей, но все-таки работающую и, например, заряжающую аккумуляторы или питающую светодиоды.

Шаговые двигатели

Одним из наиболее эффективных вариантов небольшого самодельного ветроэлектрогенератора является использование шагового двигателя (ШД) (англ. stepping (stepper, step) motor) — в таком моторе вращение вала состоит из небольших шагов. Обмотки шагового двигателя объединены в фазы. При подаче тока в одну из фаз происходит перемещение вала на один шаг.
Эти двигатели являются низкооборотными и генератор с таким двигателем может быть без редуктора подключен к ветряной турбине, двигателю Стирлинга или другому низкооборотному источнику мощности. При использовании в качестве генератора обычного (коллекторного) двигателя постоянного тока для достижения таких же результатов потребовалась бы в 10-15 раз более высокая частота вращения.
Особенностью шаговика является достаточно высокий момент трогания (даже без подключенной к генератору электрической нагрузки), достигающий 40 грамм силы на сантиметр.
Коэффициент полезного действия генератора с ШД достигает 40 %.

Для проверки работоспособности шагового двигателя можно подключить, например, красный светодиод. Вращая вал двигателя, можно наблюдать свечение светодиода. Полярность подключения светодиода не имеет значения, так как двигатель вырабатывает переменный ток.

Кладезем таких достаточно мощных двигателей являются пятидюймовые дисководы гибких дисков, а также старые принтеры и сканеры.

шаговый двигатель с шестью выводами

Например, я располагаю ШД из старого 5.25″ дисковода, работавшего еще в составе ZX Spectrum — совместимого компьютера «Байт».
Такой дисковод содержит две обмотки, от концов и середины которых сделаны выводы — итого из двигателя выведено шесть проводов:

первая обмотка (англ. coil 1) — синий (англ. blue) и желтый (англ. yellow);
вторая обмотка (англ. coil 2) — красный (англ. red) и белый (англ. white);
коричневые (англ. brown) провода — выводы от средних точек каждой обмотки (англ. center taps).

разобранный шаговый двигатель

разобранный шаговый мотор

Слева виден ротор двигателя, на котором видны «полосатые» магнитные полюсы — северный и южный. Правее видна обмотка статора, состоящая из восьми катушек.
Сопротивление половины обмотки составляет ~ 70 Ом.

Я использовал этот двигатель в первоначальной конструкции моего ветрогенератора.

шаговый мотор с пятью выводами

Находящийся в моем распоряжении менее мощный шаговый двигатель T1319635 фирмы Epoch Electronics Corp. из сканера HP Scanjet 2400 имеет пять выводов (униполярный мотор):

первая обмотка (англ. coil 1) — оранжевый (англ. orange) и черный (англ. black);
вторая обмотка (англ. coil 2) — коричневый (англ. brown) и желтый (англ. yellow);
красный (англ. red) провод — соединенные вместе выводы от средней точки каждой обмотки (англ. center taps).

Сопротивление половины обмотки составляет 58 Ом, которое указано на корпусе двигателя.

шаговый двигатель

В улучшенном варианте ветрогенератора я использовал шаговый двигатель Robotron SPA 42/100-558, произведенный в ГДР и рассчитанный на напряжение 12 В:

Ветротурбина

Возможны два варианта расположения оси крыльчатки (турбины) ветрогенератора — горизонтальное и вертикальное.

Преимуществом горизонтального (наиболее популярного) расположения оси, располагающейся по направлению ветра, является более эффективное использование энергии ветра, недостаток — усложнение конструкции.

Я выбрал вертикальное расположение оси — VAWT (vertical axis wind turbine), что существенно упрощает конструкцию и не требует ориентации по ветру. Такой вариант более пригоден для монтирования на крышу, он намного эффективнее в условиях быстрого и частого изменения направления ветра.

Сигурд Йоханнес Савониус (Sigurd Johannes Savonius)

Я использовал тип ветротурбины, называемый ветротурбина Савониуса (англ. Savonius wind turbine). Она была изобретена в 1922 году Сигурдом Йоханнесом Савониусом (Sigurd Johannes Savonius) из Финляндии.

Сигурд Йоханнес Савониус

Работа ветротурбины Савониуса основана на том, что сопротивление (англ. drag) набегающему потоку воздуха — ветру вогнутой поверхности цилиндра (лопасти) больше, чем выпуклой.

коэффициенты аэродинамического сопротивления

Коэффициенты аэродинамического сопротивления (англ. drag coefficients) $C_D$

двумерные тела:

вогнутая половина цилиндра (1) — 2,30
выпуклая половина цилиндра (2) — 1,20
плоская квадратная пластина — 1,17
трехмерные тела:
вогнутая полая полусфера (3) — 1,42
выпуклая полая полусфера (4) — 0,38
сфера — 0,5
Указанные значения приведены для чисел Рейнольдса (англ. Reynolds numbers) в диапазоне $10^4 — 10^6$. Число Рейнольдса характеризует поведение тела в среде.

Сила сопротивления тела воздушному потоку $ = S rho > $, где $rho$ — плотность воздуха, $v$ — скорость воздушного потока, $S$ — площадь сечения тела.

ветротурбина Савониуса

Такая ветротурбина вращается в одну и ту же сторону, независимо от направления ветра:

чашечный анемометр

Подобный принцип работы используется в чашечном анемометре (англ. cup anemometer) — приборе для измерения скорости ветра:

 Джон Томас Ромни Робинсон

Такой анемометр был изобретен в 1846 году ирландским астрономом Джоном Томасом Ромни Робинсоном (John Thomas Romney Robinson):

Робинсон полагал, что чашки в его четырехчашечном анемометре перемещаются со скоростью, равной одной трети скорости ветра. В реальности это значение колеблется от двух до немногим более трех.

трехчашечный анемометр

В настоящее время для измерения скорости ветра используются трехчашечные анемометры, разработанные канадским метеорологом Джоном Паттерсоном (John Patterson) в 1926 году:

ветрогенератор на микродвигателе

Генераторы на коллекторных двигателях постоянного тока с вертикальной микротурбиной продаются на eBay по цене около $5:

Такая турбина содержит четыре лопасти, расположенные вдоль двух перпендикулярных осей, с диаметром крыльчатки 100 мм, высотой лопасти 60 мм, длиной хорды 30 мм и высотой сегмента 11 мм. Крыльчатка насажена на вал коллекторного микродвигателя постоянного тока с маркировкой JQ24-125H670. Номинальное напряжение питания такого двигателя составляет 3 . 12 В.
Энергии, вырабатываемой таким генератором, хватает для свечения «белого» светодиода.

Скорость вращения ветротурбины Савониуса не может превышать скорость ветра, но при этом такая конструкция характеризуется высоким крутящим моментом (англ. torque).

Эффективность ветротурбины можно оценить, сравнив вырабатываемую ветрогенератором мощность с мощностью, заключенной в ветре, обдувающем турбину:
$P = <1over 2>rho S $ , где $rho$ — плотность воздуха (около 1,225 кг/м 3 на уровне моря), $S$ — ометаемая площадь турбины (англ. swept area), $v$ — скорость ветра.

ветрогенератор

Первоначально в крыльчатке моего генератора использованы четыре лопасти в виде сегментов (половинок) цилиндров, вырезанных из пластиковых труб:

Размеры сегментов —
длина сегмента — 14 см;
высота сегмента — 2 см;
длина хорды сегмента — 4 см;
расстояние от начала сегмента до центра оси вращения — 3 см.

ветрогенератор на мачте

Я установил собранную конструкцию на достаточно высокой (6 м 70 см) деревянной мачте из бруса, прикрепленную саморезами к металлическому каркасу:

самодельный ветрогенератор

Недостатком генератора была достаточно высокая скорость ветра, требуемая для раскрутки лопастей. Для увеличения площади поверхности я использовал лопасти, вырезанные из пластиковых бутылок:

Размеры сегментов —
длина сегмента — 18 см;
высота сегмента — 5 см;
длина хорды сегмента — 7 см;
расстояние от начала сегмента до центра оси вращения — 3 см.

Проблемой оказалась прочность держателей лопастей. Сначала я использовал перфорированные алюминиевые планки от советского детского конструктора толщиной 1 мм. Через несколько суток эксплуатации сильные порывы ветра привели к излому планок (1). После этой неудачи я решил вырезать держатели лопастей из фольгированного текстолита (2) толщиной 1,8 мм:

Читайте также  Как сделать ветрогенератор из автомобильного генератора своими руками?

Прочность текстолита на изгиб перпендикулярно пластине составляет 204 МПа и сравним с прочностью на изгиб алюминия — 275 МПа. Но модуль упругости алюминия $E$ (70000 МПа) намного больше, чем у текстолита (10000 МПа), т.е. тексолит намного эластичнее алюминия. Это, по моему мнению, с учетом большей толщины текстолитовых держателей, обеспечит гораздо большую надежность крепления лопастей ветрогенератора.
Ветрогенератор смонтирован на мачте:

Опытная эксплуатация нового варианта ветрогенератора показала его надежность даже при сильных порывах ветра.

Жорж Дарье (Georges Jean Marie Darrieus)

Недостатком турбины Савониуса является невысокая эффективность — только около 15 % энергии ветра преобразуется в энергию вращения вала (это намного меньше, чем может быть достигнуто с ветротурбиной Дарье (англ. Darrieus wind turbine)), использующей подъемную силу (англ. lift). Этот вид ветротурбины был изобретен французским авиаконструктором Жоржем Дарье (Georges Jean Marie Darrieus) — патент США от 1931 года № 1,835,018.

Жорж Дарье

ветротурбина Дарье

Недостатком турбины Дарье является то, что у нее очень плохой самозапуск (для выработки крутящего момента от ветра турбины уже должна быть раскручена).

Преобразование электроэнергии, вырабатываемой шаговым двигателем

Выводы шагового двигателя могут быть подключены к двум мостовым выпрямителям, собранным из диодов Шоттки для снижения падения напряжения на диодах.
Можно применить популярные диоды Шоттки 1N5817 с максимальным обратным напряжением 20 В, 1N5819 — 40 В и максимальным прямым средним выпрямленным током 1 А. Я соединил выходы выпрямителей последовательно с целью увеличения выходного напряжения.
Также можно использовать два выпрямителя со средней точкой. Такой выпрямитель требует в два раза меньше диодов, но при этом и выходное напряжение снижается в два раза.
Затем пульсирующее напряжение сглаживается с помощью емкостного фильтра — конденсатора 1000 мкФ на 25 В. Для защиты от повышенного генерируемого напряжения параллельно конденсатору включен стабилитрон на 25 В.

схема моего ветрогенератора

электронный блок моего ветрогенератора

Применение ветрогенератора

Вырабатываемое ветрогенератором напряжение зависит от величины и постоянства скорости ветра.

При ветре, колышущем тонкие ветви деревьев, напряжение достигает 2 . 3 В.

При ветре, колышущем толстые ветви деревьев, напряжение достигает 4 . 5 В (при сильных порывах — до 7 В).

ПОДКЛЮЧЕНИЕ К JOULE THIEF

Joule Thief (pnp)

Сглаженное напряжение с конденсатора ветрогенератора может подаваться на Joule Thief — низковольтный DC-DC преобразователь

Joule Thief

Значение сопротивления резистора R подбирается экспериментально (в зависимости от типа транзистора) — целесообразно использовать переменный резистор на 4,7 кОм и постепенно уменьшать его сопротивление, добиваясь стабильной работы преобразователя.
Я собрал такой преобразователь на базе германиевого pnp-транзистора ГТ308В (VT) и импульсного трансформатора МИТ-4В (катушка L1 — выводы 2-3, L2 — выводы 5-6) :

ЗАРЯД ИОНИСТОРОВ (СУПЕРКОНДЕНСАТОРОВ)

5R5D11F22H

Ионистор (суперконденсатор, англ. supercapacitor) представляет собой гибрид конденсатора и химического источника тока.
Ионистор — неполярный элемент, но один из выводов может быть помечен «стрелкой» — для обозначения полярности остаточного напряжения после его зарядки на заводе-изготовителе.
Для первоначальных исследований я использовал ионистор 5R5D11F22H емкостью 0,22 Ф на напряжение 5,5 В (диаметр 11,5 мм, высота 3,5 мм):

Я подключил его через диод к выходу Joule Thief через германиевый диод Д310.

заряд ионистора

Для ограничения максимального напряжения зарядки ионистора можно использовать стабилитрон или цепочку светодиодов — я использую цепочку из двух красных светодиодов:

Для предотвращения разряда уже заряженного ионистора через ограничительные светодиоды HL1 и HL2 я добавил еще один диод — VD2.

Мой самодельный ветрогенератор на шаговом двигателе. Мой самодельный ветрогенератор на шаговом двигателе Процесс изготовления генератора

При отсутствии или частых перебоях электричества лучше сделать своими руками мини ветрогенератор или несколько ветроэлектрических установок (ВЭУ) для индивидуального электроснабжения. Самодельное устройство превращает кинетическую энергию ветра в механическую за счет вращения ветроколеса.

Вначале механическая энергия, вращающая ротор, превращается в трехфазный переменный ток. Энергетический поток через контроллер накапливается в аккумуляторной батарее постоянного тока. В заключении инвертор напряжения видоизменяет ток для снабжения электроэнергией приборов и освещения.

Принцип работы ветряка прост и заключается в воздействии трех видов силы на лопасти. Импульсная и подъемная преодолевают систему тормозящей силы и запускают в движение маховик. После формирования ротором магнитного поля на неподвижной части генератора, ток запускается по проводам.

Читайте также: Накидка костюм курицы. Как сделать костюм цыпленка своими руками: описание разных вариантов карнавального костюма

Сферы применения устройства

По сути ветряные установки способны обеспечить энергией объекты разного назначения. ВЭУ больших мощностей подходят для энергоснабжения в промышленных масштабах. Правильно сконструированные самодельные устройства дают собственнику участка бесперебойное электроснабжение. Изготовить ветрогенератор для частного дома своими руками можно с минимальными трудовыми и денежными тратами.

Преимущества аппарата

Главным достоинством домашней ветроустановки считают экономию на платежах за электроэнергию. Затраченные деньги на детали и установку окупаются поставками бесплатного электричества.

Дополнительные плюсы самодельного ВЭУ:

  • заводская модель обходится в разы дороже;
  • экологичность конструкции, работающей без топлива;
  • неограниченный срок службы (при выходе из строя, комплектующие легко заменить);
  • пригодность в подходящих климатических условиях при среднегодовой скорости метра от 4 м/сек.

Недостатки

К отрицательной стороне индивидуального ветряка относят:

  • зависимость от погоды;
  • штормы и ураганы часто выводят механизм из строя;
  • требуется проведение профилактических мер;
  • высокие мачты нуждаются в заземлении;
  • некоторые модели превышают допустимый уровень шума.

Конструкция ветряка на неодимовых магнитах

Если вы хотите узнать о создании, нужно сделать основой ступицу автомобиля с дисками тормоза, такой выбор вполне оправдан, ведь она мощная, надёжная и хорошо сбалансированная. После того как вы отчистите ступицу от краски и грязи, переходите к расстановке неодимовых магнитов. Их потребуется по 20 штук на диске, размер должен составлять 25х8 миллиметров.

Магниты нужно размещать, учитывая чередование полюсов, перед склейкой лучше создать бумажный шаблон либо прочертить линии, делящие диск на сектора, чтобы не перепутать полюса. Очень важно, чтобы они, стоящие друг напротив друга, были с разными полюсами, то есть притягивались. Клеят их супер-клеем. Поднимите бордюрчики по краям дисков, и в центре намотайте скотч или залепите пластилином для недопущения растекания. Чтобы изделие работало с максимальной отдачей, катушки статора следует рассчитать правильно. Увеличение количества полюсов приводит к росту частоты тока в катушках, благодаря этому, устройство даже при низкой частоте оборота даёт большую мощность. Намотка катушек осуществляется более толстыми проводами, с целью снижения сопротивления в них.

Когда основная часть готова, изготовляют лопасти, как в предыдущем случае и закрепляют их к мачте, что может быть изготовлена из обыкновенной пластиковой трубы с диаметром- 160 мм. В конце концов наш генератор, работающий на принципе магнитной левитации, с диаметром в полтора метра и шестью крыльями, в 8м/с, способен обеспечить до 300 Вт.



Классификация ветряных генераторов энергии

Из всего парка самостоятельно сконструированных ВЭУ эксплуатируются 2 основных типа с разной осью вращения:

  • горизонтальный (крыльчатый);
  • вертикальный (карусельный).

У каждого есть свои особенности, среди которых встречаются отличия по:

  • числу лопастей (двух-, трех-, многолопастные);
  • характеристике материала лопастей (металлические, стеклопластиковые, парусные);
  • винтовому шагу (фиксируемый, изменяемый).

В домашних условиях предпочтительнее сделать своими руками вертикально-осевой ветрогенератор. Его главным преимуществом считается нечувствительность к ветру. В дополнение конструктивная простота не требует создания механизма ориентации на ветер, поэтому нужда в поворотных устройствах отпадает.

По расположению генератора: горизонтальный или вертикальный

У многих с ветросиловой установкой (ВСУ) ассоциируется схема классического вида—горизонтальная. У такого типа ось вращения идет параллельно земле, а лопасти устроены перпендикулярно. В такой конструкции обязательно требуется флюгер, работающий по принципу хвостового оперения. Это способствует выгодному положению плоскости вращения перпендикулярно потоку ветра.

Советуем почитать: Переработка и утилизация бетонных отходов

Горизонтальная позиция оси соответствует ветровому направлению. Здесь есть сложность с электрическим подключением. Без электронного регулятора слежения за направлением, корпус оборачивается вокруг оси, что вызывает обрыв проводов. Для предотвращения ситуации устанавливается ограничитель полного оборота.

Сделать вертикальный ветрогенератор своими руками намного проще. Расположенная ось вращения не зависит от стороны потока воздуха. Дополнительным преимуществом роторного винта считается то, что узлы для техобслуживания находятся внизу и подниматься наверх не нужно.

По номиналу генерируемого напряжения

Чтобы получить максимальную экономию, мастера устанавливают самодельные ветрогенераторы для дома с наибольшей мощностью. Конструкция, изготовленная на 12—14 вольт, более популярна. Для этого лучше всего подходит старый автомобильный генератор. После его изменения, преобразователь напряжения даст на выходе 12—14 вольт.

Ветрогенератор своими руками на 220 вольт считается установкой прямого применения. Для нее не нужен преобразователь величины напряжения. Но так как работа ветряка подчиняется силе воздушного потока, на выходе требуется стабилизатор. В зависимости от оборотов он выполняет функции регулятора.

Походный ветрогенератор

Иметь походный ветряк

, позволяющий получить максимальный комфорт от пребывания на природе, удобно и полезно для каждого любителя путешествий. Требования к такому ветряку очевидны:

  • компактность
  • возможность быстрой сборки или разборки для транспортировки
  • мощность, обеспечивающая электроэнергией необходимые устройства

Понадобится изготовить крыльчатку с отсоединяющимися лопастями и генератор, выдающий достаточную мощность. Оптимальный вариант — горизонтальный тип, с лопастями на винтах. Генератор лучше всего приспособить от автомобиля, он нуждается в небольшой модернизации (перемотка катушек) и установке магнитов на ротор (используются неодимовые магниты для возбуждения обмоток).

На природе достаточно закрепить устройство на стволе дерева или иной подходящей опоре и навести на ветер. Для компактности можно не делать устройство вращения вокруг вертикальной оси и регулировать положение вручную.



Примеры самодельных генераторов

Каждая ветросиловая установка собрана из трех основных элементов:

  • Генератор для ветряка снимают со старого автомобиля, приборов. При отсутствии машинных деталей ветрогенератор делают своими руками из асинхронного двигателя.
  • Мачта, размер которой зависит от мощности ВСУ.
  • Пропеллер, устанавливаемый сразу на генератор или удерживаемый ременной подачей.

Чтобы сделать эффективный ветрогенератор своими руками, понадобятся вспомогательные части:

  • Аккумуляторная батарея, исполняющая функцию ресивера— накопителя энергии.
  • Контроллер и инвертор для преобразования разных видов тока.
  • Автоматический переключатель источника питания для непрерывной поставки электроэнергии.

Пропеллер

Лопастной движитель предназначен для получения тяги. Это воздушный винт, состоящий из лопастей и втулки, которая соединяет их с валом двигателя.

Для изготовления работоспособного пропеллера учитывается 3 условия:

  • двигательная мощность;
  • диаметр крыльчатки;
  • частота вращения.

Диаметр лопастей для ветряка рассчитывается с учетом требующейся мощности по табличным показателям или в онлайн-калькуляторе.

Генератор

Широкое распространение получили доступные ветрогенераторы из автомобилей. Но они уступают компактным асинхронным двигателям, выполненных своими руками на неодимовых магнитах. Эту конструкцию собирают с нуля с изготовлением обмоток или переделывают ротор.

Машинный электромотор нуждается в обязательной доработке.

Отлично подходят электродвигатели с промышленных установок, вентиляторов, техники. Для маломощного ветрогенератора из шуруповерта понадобится немного дополнительных деталей, главное условия для его работы—диаметр лопастей должен составлять 1,5—3 метра.

Как разновидность миниатюрной альтернативы переносную электроустановку легко сделать из шагового моторчика принтера. Такое устройство станет спасением для подзарядки телефона вдали от дома.

Мачта

Выбор типа зависит от финансовых и технических возможностей владельца. Самодельную электростанцию устанавливают на один из видов мачт:

  • растяжной;
  • сварной;
  • конический;
  • гидравлический.

К трубам небольшого диаметра присоединяют растяжки из стального троса на одном или разных уровнях. Для кольев подойдут уголки, швеллера, закопанные или забетонированные. Тяжелым и высоким опорам требуется надежный фундамент с залитыми анкерами. При малой мощности генератора до 1кВт и легкости конструкции вопрос с прочностью не существенен.

Горизонтальные ветряки нельзя крепить на крыше дома из-за распространения шума и вибрации.

Лопастники

На энергопроизводительность самодельной ветроустановки влияет количество, форма, вес и материал крыльев. Дешевле сделать своими руками лопасти для ветрогенератора из доступных средств. Источником обычно служат пластик, металл, древесина.

Самые простые выполняются из пластиковых бутылок, бытового кулера, но они не долговечны. Для недорогого варианта подойдут ПВХ-трубы, вырезанные по схемам.

Советуем почитать: Основные типы загрязнения подземных вод и борьба с ними

Алюминиевые пластины прослужат дольше. Для придания обтекаемой формы и правильного изгиба металлическую деталь желательно обработать на прокатном стане.

Мастеров возможно заинтересуют лопасти из стекловолокна. Для этого потребуется стеклоткань, эпоксидный клей и деревянная матрица для моделирования. Такая конструкция годится для изготовления своими руками парусного ветрогенератора или парусника.



Законность установки ветрогенератора

Мало кто придает значение правомерности ВСУ на своем земельном участке. На самом деле в действующем законодательстве нет положения, запрещающего индивидуальные ветряки. При мощности 20 кВт электроустановка считается бытовой и не нуждается в сертификации. В дополнение ФНС не облагает налогом владельцев, получающих бесплатную электроэнергию.

Неприятности возможны при несоответствии четырем параметрам:

  • Высота мачты. При расположении участка вблизи мостов возводить строение выше 15 м запрещено.
  • Распространение шума. Некоторые модели шумные, поэтому лучше воспользоваться шумомером и зафиксировать данные документально. Если уровень не превышает нормативы, возмущение соседей будет не обосновано.
  • Помехи для ТВ-эфира. Прибор, устраняющий телепомехи, не допустит проблемы распространения телесигнала.
  • Претензии орнитологической службы. В крайне редких случаях конструкция расположена на пути миграции перелетных птиц, что вызывает опасения ученых.


Как сделать ветрогенератор своими руками: последовательность действий

Для домашнего горизонтального ветрогенератора подходит мотор от трактора. Тракторный ротор вращается до 6000 об/мин, поэтому обмотку статора перематывают под малые обороты или устанавливают механический редуктор. С учетом моторного веса в 6 кг, лучше использовать метод изменения электрообмотки, что не увеличит общую массу конструкции.

  1. Винтовыми лопастями послужит труба из алюминия Ø 200 мм. По чертежам вырезать 2—3 заготовки.
  2. Из алюминиевого листа собрать диск винта. При размахе крыла в 2 м подойдет круг Ø 150—200 мм.
  3. Вырезать 6 пластин и склеить их эпоксидкой.
  4. В центре диска просверлить отверстие под крепление на валу, установить шпоночный паз.
  5. На диске разметить и сделать отверстия для крепления болтами в намеченных точках лопастей.
  6. На основание флюгерной конструкции сгодится труба прямоугольного профиля, прикрепленная к генератору.
  7. К концу профильной трубы прикрепить хвостовой флюгер.
  8. В точке центра тяжести, поперек тела трубы, закрепить болт (длиной до 300 мм и Ø 30 мм) снизу гайкой, сверху контргайкой. В его середине высверлить отверстие для кабеля.
  9. Прикрепить генератор на основание флюгера.
  10. Закрепить механизм на мачте.
  11. Пропустить провод от генератора сквозь болт внутрь трубы для нижнего вывода.
  12. Конец провода пропустить через контроллер и подключить к АКБ.
  13. Поднять мачту и укрепить на месте растяжками.

Для увеличения срока службы ВСУ обязательным дополнением к конструкции становятся модуль торможения и ограничитель поворота флюгера.

Инструкция сборки из автомобильного генератора

Для конструирования своими руками ветрогенератора из автомобильного генератора подойдет четырехлопастное ветроколесо. У лопастей крыльчатого типа с Ø до 1,8 м аэродинамическое сопротивление улучшено, что повышает производительность энергии. Подготовленный пропеллер крепится к генераторной оси болтами.

Чтобы электрическая схема заработала, требуется предварительная перемотка статора. Для этого избавляются от катушки возбуждения и перематывают статор тонкими медными жилами. После переделки магнитная способность ротора увеличивается и появляется мощность до 300 ватт (при ветре 10 м/с). К механизму подключают провода и соединяют их аккумуляторной батареей и преобразователем напряжения.

Особенности сборки ветрогенераторра из стиральной машины своими руками

Единственным отличием при изготовлении ветрогенератора своими руками из стиральной машины считается невозможность его применения без модернизации. Диаметр ротора, извлеченного из разобранного двигателя, уменьшают на токарном станке для соответствия с магнитами. В дальнейшем процесс сборки ничем не отличается от обычной ветроустановки на неодимовых магнитах.

Советуем почитать: Системы утилизации тепла дымовых и отходящих газов

Ветрогенератор своими руками из шагового двигателя

Для подзарядки небольшого аккумулятора подойдет установка, выполненная из мотора принтера. Вырабатываемый переменный ток легко преобразуется в постоянный с помощью конденсаторов и диодных мостов по схеме.

С целью снижения потери 220 В пользуются диодами Шоттка.

Такому энергоустройству хватит винта до 50 см. Для изготовления лопастей берут ПВХ трубы. Под размер вала вытачивается втулка с фланцем и насаживается на него. Механизм закрепляется винтами. К фланцам крепятся лопасти.

Питание выводится к электроплате внизу. Из шагового двигателя выходят до 6 проводов, для которых требуются токосъемные кольца. Собрав в единую цепь все элементы, приступают к тестированию.

Ветрогенератор из автомобильного генератора своими руками

Мотор каждой машины нуждается в модификации. Для изготовления ветрогенератора своими руками из автомобильного генератора обязательно перематывают катушку проводами с меньшим сечением и увеличенным количеством витков. Если не заниматься обновлением, в схеме электроцепи должен появиться редуктор (мультипликатор). В таком случае двигатель не переделывают.

Шаговые двигатели

Шаговые двигатели, как и серводвигатели, предназначены для построения машин, требующих точных управления и отслеживания позиционирования.

d7d1f9b6e0afdac6d5c5d1d1dbcb852b8f2e482c

Оценка характеристик шаговых двигателей

То, как шаговые двигатели позволяют управлять позиционированием, сильно отличается от способа, используемого сервоприводами. Серводвигатели имеют возможности абсолютного позиционирования. В любой момент микроконтроллер может сделать запрос контроллеру сервопривода и получить назад значение угла.

Шаговый двигатель, напротив, использует относительное позиционирование. Шаговые двигатели вращаются не непрерывно (как коллекторные двигатели постоянного тока или бесколлекторные двигатели), а дискретными «шагами»,

Типовой шаговый двигатель имеет 200 шагов на полный оборот. Таким образом, каждый раз, когда шаговый двигатель «делает шаг», он поворачивается на 1,8°. Тщательно отслеживая количество шагов, на которое шаговый двигатель повернулся из известного начального положения, микроконтроллер может с высокой степенью точности определять положение двигателя или всего, что к нему прикреплено.

Примеры использования шаговых двигателей в проектах

Лучшие типы проектов для шаговых двигателей

3D принтеры

Шаговые двигатели используются практически во всех настольных 3D принтерах. Эта технология двигателей позволяет контроллерам 3D принтеров отслеживать положение печатающей головки с точностью до минуты (обычно в масштабе микрометров). Кроме того, шаговые двигатели обеспечивают высокий крутящий момент на низких скоростях, что полезно для перемещения тяжелого экструдера вокруг рабочей области.

3D принтеры используют шаговые двигатели для отслеживания положения печатающей головки

Станки ЧПУ

По причинам, аналогичным 3D принтерам, шаговые двигатели широко используются в станках ЧПУ. Станок с ЧПУ запускает задание с известной нулевой позиции. Контроллер подсчитывает количество шагов, на которое перемещаются двигатели, переводя их в расстояния в соответствие с конструкцией ремней, которыми управляют шаговые двигатели. Этот тип отслеживания положения обеспечивает высокий уровень точности размеров обрабатываемых станком ЧПУ деталей.

Большие роботы-манипуляторы

В предыдущем разделе объяснялось, как в более мелких роботах манипуляторах используются серводвигатели. В более крупных роботах манипуляторах часто используются шаговые двигатели. Таким образом, если вы разрабатываете робота-манипулятора, который должен будет перемещать тяжелые грузы, дополнительный крутящий момент больших шаговых двигателей по сравнению с крутящим моментом, обеспечиваемым серводвигателями, позволит вашему роботу-манипулятору поднимать и перемещать гораздо более тяжелые объекты.

Шаговые двигатели хорошо работают в больших роботах-манипуляторах, которые требуют возможности подъема более тяжелых объектов

  • Scott Hatfield. What Type of Motor is Best for My Project?

Ветроэлектрическая установка роторного типа

Вертикально-осевые конструкции бесшумны, что не мало важно на маленьких участках. Для сбора роторного ветряка своими руками с мощностью 1,5 кВт потребуется:

  • автогенератор и АКБ на 12 V;
  • преобразователь напряжения до 1500 W и 12—220 V;
  • вольтметр;
  • стальная или алюминиевая емкость;
  • электромагнитное реле контрольной лампы заряда;
  • водонепроницаемый выключатель 12 V;
  • медные провода с сечением 2,5 и 4 мм2;
  • 2 хомута.

По схеме можно собрать своими руками контроллер для ветрогенератора из реле, резистора и силового транзистора.

Маломощный ветрогенератор из шагового двигателя: самодельное устройство из принтера

1718288287205501.src - Маломощный ветрогенератор из шагового двигателя: самодельное устройство из принтера

Создание ветрогенератора не обязательно означает изготовление крупного и мощного комплекса, способного обеспечивать электроэнергией целый дом или группу потребителей. Можно изготовить небольшой ветряк, представляющий собой, по сути, действующую модель серьезной установки. Целью такого мероприятия может быть:

  • Ознакомление с основами ветроэнергетики.
  • Совместные обучающие занятия с детьми.
  • Экспериментальный образец, предваряющий строительство крупной установки.

Создание такого ветряка не потребует использования большого количества материалов или инструментов, можно обойтись подручными средствами. Рассчитывать на выработку серьезных объемов энергии не приходится, но для питания небольшого светильника на светодиодах может хватить. Основная проблема, существующая при создании небольших ветряков — это генератор. Его сложно создать самостоятельно, поскольку размеры устройства невелики. Проще всего использовать небольшой электродвигатель, позволяющий использовать его в режиме генератора.

ice screenshot 20210830 164111 1152x604 - Маломощный ветрогенератор из шагового двигателя: самодельное устройство из принтера

Самодельный ветряк на основе шагового двигателя

Чаще всего, при изготовлении маломощных ветрогенераторов используют шаговые электродвигатели. Особенность их конструкции состоит в наличии нескольких обмоток. Обычно, в зависимости от размера и назначения, изготавливают двигатели с 2, 4 или 8 обмотками (фазами). При подаче напряжения на них по очереди вал соответственно поворачивается на определенный угол (шаг).

Преимущество шаговых двигателей заключается в способности производить достаточно большой ток при низких скоростях вращения. На генератор из шагового двигателя можно установить крыльчатку без всяких промежуточных устройств — передач, редукторов и т.п. Выработка электроэнергии будет производиться с такой же эффективностью, как и на устройствах другой конструкции с использование повышающих передач.

Разница в скоростях весьма существенная — для получения такого же результата, например, на коллекторном двигателе, потребуется скорость вращения в 10 или 15 раз больше.

Считается, что с помощью генератора из шагового двигателя можно заряжать аккумуляторы или батареи мобильных телефонов, но на практике положительные результаты отмечаются крайне редко. В основном, получаются источники питания для небольших светильников.

К недостаткам шаговых двигателей можно отнести значительное усилие, необходимое для начала вращения. Это обстоятельство снижает чувствительность всей ветроустановки к слабым ветрам, что можно несколько скорректировать путем увеличения площади и размаха лопастей.

Отыскать такие двигатели можно в старых дисководах для гибких носителей, в сканерах или принтерах. Как вариант, можно приобрести новый двигатель, если в запасе нужного устройства не окажется. Для большего эффекта следует выбирать более крупные двигатели, они способны выдавать достаточно большое напряжение, чтобы его можно было как-то использовать.

Ветрогенератор из деталей от принтера

Один из подходящих вариантов — использование шагового двигателя от принтера. Его можно извлечь из вышедшего из строя старого устройства, в каждом принтере как минимум два таких двигателя. Как вариант, можно приобрести новый, не бывший в эксплуатации. Он способен вырабатывать мощность около 3 ватт даже при слабом ветре, типичном для большинства регионов России. Напряжение, которое может быть достигнуто, составляет 12 и более В, что позволяет рассматривать устройство как возможность зарядки аккумуляторов.

Шаговый двигатель выдает переменное напряжение. Для пользователя необходимо прежде всего выпрямить его. Потребуется создать диодный выпрямитель, для чего потребуется по 2 диода на каждую катушку. Можно и напрямую подключить светодиод к выводам катушки, при достаточной скорости вращения этого хватит.

Крыльчатку ротора проще всего установить прямо на вал двигателя. Для этого надо изготовить центральную часть, способную плотно усаживаться на вал. Доя усиления фиксации крыльчатки необходимо просверлить отверстие и нарезать в нем резьбу. Впоследствии в него буде завинчиваться стопорный винт.

Для изготовления лопастей обычно используют полипропиленовые канализационные трубы или иные подходящие материалы. Главным условием является малый вес и достаточная прочность, поскольку лопасти иногда набирают вполне приличную скорость. Использование ненадежных материалов может создать нежелательную ситуацию, когда крыльчатка разваливается на ходу.

Обычно изготавливают по 2 лопасти, но можно сделать и большее количество. Необходимо помнить, что большая площадь лопастей повышает КИЭВ ветряка, но параллельно с этим увеличивается фронтальная нагрузка на крыльчатку, передающаяся валу двигателя. Изготовление маленьких лопастей также не рекомендуется, поскольку они не смогут преодолеть залипание вала при старте вращения.

Для возможности вращения ветряка вокруг вертикальной оси надо сделать специальный узел. Сложность в этом заключается в необходимости обеспечить неподвижность кабеля, идущего от генератора. Поскольку устройство имеет, скорее, декоративное назначение, обычно подходят к вопросу проще — устанавливают потребитель прямо на корпусе генератора, исключая присутствие длинного кабеля. В противном случае придется монтировать систему наподобие щеточного коллектора, что нерационально и требует большого количества времени.

Мачта

Собранный ветряк необходимо установить на мачту высотой как минимум 3 метра. Потоки ветра у поверхности земли имеют нестабильное направление, вызванное турбулентностью. Подъем на некоторую высоту поможет получить более равномерные потоки. Для самостоятельной установки на ветер по оси вращения устанавливают хвостовой стабилизатор, играющий роль флюгера. Он делается из любого куска пластмассы, алюминиевой пластинки или иного подручного материала.

Источник https://acdc.foxylab.com/windgen

Источник https://xn—-9sbaf2a7aearjl2a.xn--p1ai/shem/generator-iz-beskollektornogo-dvigatelya.html

Источник https://energo.house/veter/vetrogenerator-iz-shagovogo-dvigatelya.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: