Использование солнечных панелей без аккумулятора

 

Содержание

Как подключить солнечную батарею без аккумуляторов

Вопрос от 08/01/2013 по электронной почте от Вячеслава (v*****5 at rambler.ru):

Здраствуйте. может солнечная электростанция работать без аккумуляторов т.е. без накопления электричества на прямую с преобразователем и конвертором. Возможны варианты?

Ответ:

Здравствуйте!
Да, такой вариант возможен.

Мы можем предложить Вам вариант со специальным инвертором, который подмешивает электричество от солнечных батарей в сеть 220 Вольт.
В этом случае, днем энергия от солнечных батарей будет использоваться в первую очередь. А если ее недостаточно, то дополнительно будет использоваться энергия из сети.
При этом нужно иметь ввиду, что если отключат сетевое электричество, то энергию от солнечных батарей использовать не получится (для работы этого инвертора обязательно должен быть источник 220 Вольт).

Здравствуйте, а этот инвертор MultiPlus Compact 24/2000/50-30 может работать без АКБ и при пропадании сети 220 В, от СБ.
Если можете осветить вопрос: принцип распределения энергии от СБ между зарядкой АКБ и нагрузкой. Какой приоритет, или он программируется?
Вообще хочется приобрести инвертор 24В и пару СБ, для начала. Среднее потребление 200 кВт/ч в месяц, место расположения 48 гр.сш.
С уважение, Валерий.

Здравствуйте, а этот инвертор MultiPlus Compact 24/2000/50-30 может работать без АКБ и при пропадании сети 220 В, от СБ.

Добрый день!
Все инверторы серии MultiPlus, в том числе и MultiPlus Compact 24/2000/50-30, работают только совместно с АКБ (это не сетевые инверторы, для работы которых АКБ не требуется).

Если можете осветить вопрос: принцип распределения энергии от СБ между зарядкой АКБ и нагрузкой. Какой приоритет, или он программируется?

При пропадании сети 220 Вольт инвертор использует в первую очередь энергию от СБ, а если ее недостаточно, то от АКБ.
При наличии сети 220 Вольт возможно большое количество вариантов программирования инвертора, в том числе, приоритетное использование энергии от СБ.

Вообще хочется приобрести инвертор 24В и пару СБ, для начала. Среднее потребление 200 кВт/ч в месяц, место расположения 48 гр.сш.

Кроме модели MultiPlus Compact 24/2000/50-30, рекомендую обратить внимание на инвертор немного меньшей мощности PSC1800-24-35, который также обладает широкими возможностями настройки (даже бОльшими, чем инверторы MultiPlus).

48 гр.сш. — это неполная информация, т.к. от долготы тоже зависит выработка СБ.
Тем не менее, если Вы купите две солнечные панели по 300 Вт, то в весенне-летний период обеспечите до 100 кВт*час «солнечной» электроэнергии в месяц в зависимости от региона.

Рекомендую посмотреть это готовое решение, чтобы понять примерный состав оборудования.

Прошу прощения, тема для меня новая. Я правильно понял, что при использовании СБ, для сетевых инверторов контроллер заряда не требуется, а для инверторов с зарядным устройством нужен. Можно было бы хоть схемы включения разных вариантов выложить или я не нашел их на сайте.

Я правильно понял, что при использовании СБ, для сетевых инверторов контроллер заряда не требуется, а для инверторов с зарядным устройством нужен. Можно было бы хоть схемы включения разных вариантов выложить или я не нашел их на сайте.

Да, Вы все правильно поняли.
Несколько схем Вы можете найти этом форуме, например, в 10-м сообщении этой темы есть схема солнечной электростанции с контроллером заряда и инвертором с ЗУ.

А в случае с сетевым инвертором все гораздо проще — на его вход подключается цепочка СБ, а его выход подключается к сети 220 Вольт через автомат.

Непонятно, каким образом инвертор с зарядным устройством и контроллер заряда определяют степень заряда АКБ, если все соединено параллельно и ничего неизвестно о состоянии нагрузки. Имеется ввиду использование с приоритетом солнечных панелей.

Инвертор с зарядным устройством и контроллер заряда определяют степень заряда АКБ по уровню напряжения на АКБ.
Инвертор имеет полную информацию о нагрузке, т.к. вся нагрузка подключена через него, и может быть запрограммирован так, как нужно пользователю.

Если Вы сформулируете свою задачу, то я смогу ответить, можно ли это сделать. Т.к. описать бесконечное множество вариантов программирования инвертора я не могу.

Пока я писал ответ, Вы уточнили свой вопрос:

В этом случае в инверторе программно отключается встроенное зарядное устройство и настраиваются уровни напряжения на АКБ при которых происходит использование солнечной энергии.
Например, при 90-100% заряда АКБ инвертор переключается на АКБ и солнечные панели, а при уровне заряда АКБ 50-60% переключается обратно на сеть и ждет, пока солнечные панели не зарядят АКБ до 90-100%.

Задача такая:
1. АКБ используется только при отсутствии 220, заряд поддерживается 100 #.
2. Приоритет альтернативного источника питания.

Получается, что при недостаточном использовании СП, все равно будет работать АКБ? До определенного ее разряда?
И тогда нет особой разницы какой инвертор использовать сетевой без Контр.зар. или сетевой с контр.заряда и АКБ?

И задача основная стоит иметь 100# резерв в виде АКБ + использование альтернативных источников

Задача такая:
1. АКБ используется только при отсутствии 220, заряд поддерживается 100 %.
2. Приоритет альтернативного источника питания.

Таким образом можно настроить инверторы Outback серий GFX, GVFX, но проблема их использования состоит в том, что если солнечные батареи выдают больше энергии, чем в данный момент потребляют электроприборы в доме, то излишки энергии уходят в общую сеть. А генерация электроэнергии в сеть запрещена по текущим договорам электроснабжения (можно только получать электроэнергию).
Поэтому использование сетевых инверторв, работающих по этому же принципу и не развито пока в России. Могут быть проблемы с ресурсоснабжающей организацией, если они обнаружат, что Вы генерируете электроэнергию в общую сеть.

Получается, что при недостаточном использовании СП, все равно будет работать АКБ? До определенного ее разряда?

По указанной выше причине мы предлагаем варианты реализации Вашей задачи на инверторах TBS или Victron, но в этом случае без частичного использования АКБ на постоянной основе не обойтись, но можно сократить циклирование до ~20% (при 100% используем СП, при 80% — используем сеть и ждем пока АКБ зарядятся до 100%)

Использование солнечных панелей без аккумулятора

Солнечные батареи без аккумулятора

С появлением солнечных батарей для преобразования энергии солнца в электрическую стала рассматриваться возможность использовать солнечные панели без аккумулятора. Все дело в том, что АКБ влекут дополнительные затраты. Будет ли выгодным отказ от их использования – рассмотрим ниже.

Зачем отказываться от аккумуляторов

Система, в которую включен АКБ, обеспечивает непрерывную подачу энергии. Будет ли подача действовать всю ночь – зависит от ёмкости и вместительности аккумулятора. Преимущество солнечной системы с АКБ – непрерывная подача энергии в рамках доступного резерва.

Читайте также  Контроллеры для солнечных батарей

В то же время она обладает следующими недостатками:

  • высокая стоимость АКБ (от 11 000 р.) и стабильный рост цены аккумуляторов;
  • снижается КПД системы, т.к. энергия теряется при заряде-разряде батареи;
  • короткий срок службы аккумуляторов (при большой нагрузке – 1-2 года);
  • необходимость замены аккумуляторов влечет дополнительные расходы;
  • утилизация АКБ доступна не в каждом регионе.

Солнечная панель с батареей

Можно ли использовать солнечные панели без аккумулятора

Да, но важно понимать, что солнечные батареи без аккумулятора работают только тогда, когда светит Солнце. Ночью и во время облачности энергия от них перестанет поступать.

Солнечные системы без использования аккумуляторов актуальны как резервный источник энергии. При хороших погодных условиях он может стать постоянным. Возможность включения его в цепь с центральным электроснабжением обеспечит непрерывную подачу энергии с ощутимой экономией средств.

Отказ от аккумуляторов целесообразен только, если солнечная система будет работать в связке с центральным электроснабжением. Это возможно при использовании сетевой солнечной электростанции.

По сравнению с аккумуляторными, солнечные панели без использования аккумуляторов обладают следующими преимуществами:

  • низкая стоимость установки;
  • меньше компонентов для обслуживания;
  • экономия на счетах за электроэнергию;
  • экологически чистое производство энергии.

Солнечная система без АКБ

В первую очередь, обдумывая такой вариант необходимо определиться со следующими параметрами:

  • частота перебоев электроснабжения (внезапные отключения электричества);
  • влияние таких перебоев на вашу деятельность.

Если перебои с электроэнергией происходят часто, и они критичны (например, к компьютеру не подключен аппарат бесперебойного питания), солнечные панели без АКБ не подойдут.

Варианты схем подключения солнечных батарей

Оглавление статьи: Варианты схем подключения солнечных батарей

Солнечные батареи чувствительные к правильности соединения и расположению всех элементов — небольшая ошибка приведет к критическому падению КПД. Обращают внимание не только на угол размещения панелей, но и на соотношение характеристик элементов (контроллеров, аккумуляторов, преобразователей и прочего). Правильный продуманный монтаж и схема подключения солнечных батарей обеспечит большую эффективность и окупаемость по сравнению с системой, подключенной небрежно. Рассмотрим варианты сборок автономных солнечных электростанций (СЭС), укажем какие лучшие, а также опишем подбор составляющих, предостережения, правила.

Схема 1

Основы и состав солнечных станций

Назначение гелиопанелей — сбор и концентрация (притягивание) на себе солнечного света (ультрафиолета), преобразование его через контроллеры, инвертор в электричество и подача его через аккумуляторные батареи или напрямую в сеть 220 В (или 380 В) дома.

Солнечные батареи

Излишки электричества можно продавать. Одно из преимуществ системы — полная автономность, автоматичность. Недостаток — зависимость от погоды, климата, затенения.

Солнечные панели

Стандартная цель пользователя — подобрать элементы так, чтобы они окупились за наименьший срок. Поэтому очень важна правильная сборка — от нее зависит эффективность оснащения.

схема 2

Элементы

Главные функциональные части СЭС:

  1. СБ — панели со специальным покрытием. Притягивая, задерживая, аккумулируя и концентрируя солнечный свет, тепло, передают его дальше для преобразования в электричество.
  2. Контроллер. Контролирует, показывает состояние АКБ, зарядку/разрядку. Прерывает зарядку, если идет перезарядка, и возобновляет ее.
  3. Инвертор. Преобразует энергию солнца в ток нужного параметра — переменный для бытовой сети (220 или 380 В). Можно ставить несколько таких устройств (как и контроллеров) — система будет стабильнее.
  4. Аккумуляторные батареи, блоки бесперебойного питания — обязательная часть, с ними энергия будет накапливаться и расходоваться соответственно нуждам потребителя, сети.
  5. Предохранители. Монтируются между панелями и их секциями, исключают короткие замыкания.
  6. Коннекторы, распространенный стандарт MC4.

Контроллер

Контроллеры могут быть встроенными внутрь инверторов, БПП. Сама солнечная батарея (поли или монокристалл) состоит из 4 слоев: стеклянное покрытие, выдерживающее удары града и подобные нагрузки, пленочное, прозрачное покрытие (EVA), гелиоэлемент (кремниевый), притягивающий и взаимодействующий с солнечными лучами, пленка для герметизации. Есть также разное размещение p и n слоев, переходов внутри. Тонкопленочные разновидности имеют особую структуру.

Коннекторы

Как подключить

Рассмотрим основы, этапы подсоединения элементов стандартной СЭС. По ходу станет понятной общая схема подключения солнечных панелей. Перед сборкой надо проверить все части на соответствие друг другу, иначе какой-либо прибор может выйти из строя из-за перегрузки или не запуститься.

  1. Сначала обычно соединяют контроллеры с аккумуляторами. Так проверят эти 2 элементы.
  2. Затем — первый элемент с панелями.
  3. АКБ с инвертором (ставится после аккумуляторов).
  4. Разводка по потребителям.

Очередность деталей на картинке ниже:

Очередность деталей

Советуем прочитать: узнайте как работает солнечная батарея, из каких материалов она может производиться.

Контроллер и АКБ

Почти всегда АКБ подсоединяются к гелиобатареям не напрямую, а через контроллер, регулирующий их зарядку/разрядку, осуществляющий согласно этого автоматическое вкл./выкл.

С другой стороны от аккумуляторов прокладывают провода к инвертору. Схема такая: соединяем блок аккумуляторов и контроллер (потом последний с СБ); затем — первый с инвертором.

Традиционное, а точнее, единственно правильное место элементов отображено на схеме:

Контроллер и АКБ

Бесконтрольное получение энергии опасно, вызывает как превышение расхода, так и чрезмерную зарядку. Эти два фактора губительны — быстро причиняют износ и неработоспособность АКБ. Чтобы исключить описанное между фотоэлементами и аккумуляторами ставят контроллер, управляющий режимом зарядки/разрядки (отдачи). Данная деталь обеспечивает нормальное взаимодействие и с инвертором, создающим стандартные 220 В и 50 Гц, устанавливаемым на выходе АКБ. Такая схема традиционная, самая оптимальная, позволяет не перегружать и использовать полный потенциал, она настолько привычная, что подразумевается по умолчанию.

Контроллер и АКБ 2

Соединение, схемы соединения, подключения контроллера солнечных батарей, фактически, это один вариант: провода, соблюдая полярность, заводят на клеммы устройства.

Без контроллеров

Чрезвычайно редко, только в специальных, требующих этого условиях, собирают упрощенную схему — модули без контроллера.

Без контроллеров

Важно, чтобы ток фотоэлементов заведомо не смог создать перезаряд АКБ, иначе особого смысла в сборке нет — батарея проработает некоторое время (даже несколько месяцев), но в конечном итоге намного быстрее выйдет из строя, поэтому не окупится.

фотоэлемент

Упрощенный метод используют, когда АКБ успеет произвести цикл зарядки/разрядки без перезаряда:

  • для регионов с коротким световым периодом суток;
  • в местностях, где положение солнца низкое;
  • с маломощными фотоэлектрическими модулями, потенциала которых не хватит для избыточной зарядки.

схема 3

Описанный способ, как подключить солнечные гальванические элементы предполагает установку защитного диода как можно ближе к АКБ. Задача элемента — предохранить аккумулятор от короткого замыкания: фотоэлементам оно не повредит, но для указанного узла составляет опасность. Также КЗ может причинить перегрев и расплавление проводки, что спровоцирует пожар.

Подключение аккумуляторов и СБ и контроллера

АКБ есть в составе комплекта СЭС или их можно докупить отдельно под ее параметры.

АКБ

Количество может быть неограниченным.

схема 4

Можно соорудить блок их батарей — пользователь получит значительный резерв, например, если часто использует электричество ночью. Желательно, чтобы АКБ были с одинаковыми характеристиками, их подключают последовательно. Размещают на стеллажах, внутри небольших выгородок.

схема 5

Проиллюстрируем с короткими объяснениями, как выглядит схема подключения, установка солнечной батареи к аккумулятору, подсоединение с контроллером.

Осматривают контроллер: определяют провода (плюс/минус, то есть красный/черный), клеммы. Обычно на изделии все контакты подписаны с графическими изображениями.

Осматривают контроллер

Присоединяем контакты к клеммам АКБ и батарей (красный провод «+», черный «−»). Закручиваем зажимы.

Присоединяем контакты к клеммам АКБ

После подсоединения табло контроллера покажет данные о нагрузке, напряжении, параметры вкл./выкл. аккумуляторов.

табло контроллера

Бюджетный контроллер с базовыми настройками, тремя парами клемм обслужит панели на 150 Вт. Можно установить несколько таких приборов, если много гелиопанелей.

Поэтапно как подключить солнечную батарею и перечисленные элементы (полярность соблюдают обязательно):

  1. Соединяют проводами АКБ и контроллер. Это покажет, как устройство обнаружит и покажет сетевое напряжение (стандартно 12, 24 В). Для аккумуляторов обычно – первая пара клемм.
  2. Подключают фотоэлектрические модули — вторая пара контактов.
  3. Отвод на потребителей с низковольтным питанием (12, 24 В) — третья пара клемм. Кроме оснащения наподобие, например, ночного освещения (можно настроить время вкл./выкл.), для другого оборудования с обычными параметрами питания (от 220 В) ее нельзя использовать. К ней можно и не подключать ничего. Другие потребители (220 В) запитываются через инвертор.
Читайте также  Прожекторы на солнечных батареях

схема 6

Контроллер осуществляет постоянный мониторинг АКБ, при пиковых нагрузках являет собой буфер, защищающий ее от перегрузок. Два элемента рассматривают взаимосвязано.

Подключение контроллера к панелям

Далее, надо подсоединить солнечные батареи к контроллеру, схема как таковая отсутствует — проводки просто подключают в клеммы.

Осматриваем панели на целостность и отсутствие изъянов, брака. Снимаем защитную пленку. Более распространенные изделия — поликристаллические, это своеобразный, сравнительно недорогой вариант, именно их чаще всего применяют для загородных домов. Обычно они на 12 В, аккумуляторы также должны отвечать этому параметру, контроллер – более универсальное устройство обычно охватывает и это напряжение и его другой диапазон (24 В и так далее).

панели

Ниже внешний вид контроллера — прибора для регулировки заряда АКБ. Устройство автоматически отключает батарею от системы, когда заряд достигнет 11 В. Изучают инструкцию — даже китайские недорогие бренды часто техдокументацию переводят на русский. В таком случае там есть понятные схемы, варианты подключения. Далее, зажимают проводки на клеммах, они подписаны графическими символами — контакты к панелям, как правило, крайние левые.

внешний вид контроллера

Подсоединяют жилы, при этом следят за соблюдением полярности. Если провода из комплекта, то часто есть бирки, надписи. Для удлинения, подсоединения к оборудованию кабели оснащены штекерами «папа-мама». Именно с их помощью объединяют провода контроллера и идущие от панелей.

Подсоединяют жилы

Если подсоединяют несколько панелей, то применяют параллельное подключение — несколько проводков в клеммы, используют разветвитель. Можно поставить 2 и больше контроллеров.

Подключение инвертора

На контроллере есть клемма для низковольтных потребителей 12, 24 В, для них инвертор не потребуется — линия таких приборов подключаются на эти контакты напрямую. Есть ситуации, когда фотоэлементы используются так, только для такого оборудования.

Подключение инвертора

Для оснащения на 220 В (или для трехфазной сети 380 В) потребуется указанный прибор, так как он трансформирует ток в указанный вольтаж с частотой 50 Гц, то есть создает переменную величину как у обычной бытовой сети. Пользователь получит возможность запитывать все оборудование дома аналогично, как от центральной линии энергосбыта.

схема 7

Инвертор есть в составе комплекта СЭС или докупается отдельно. Алгоритм подключения следующий. Первый этап — распаковка, осмотр, проверка комплектации, ознакомление с инструкцией. Обязательно должны быть 2 кабеля («+» и «–») с «крокодилами». Далее, ими делают подключение к АКБ. А к инвертору шнуры подключаются с помощью специальных креплений: контакты заходят на клеммы, сверху зажимаются завинчивающимися пластиковыми крышечками.

контакты заходят на клеммы

К клеммам АКБ инвертор подсоединяется «крокодилами», соблюдая полярность:

К клеммам АКБ инвертор подсоединяется «крокодилами»

Варианты соединения солнечных панелей между собой

Особых проблем не возникает, если панель одна, также и вариант только один: подсоединяют к соответствующим разъемам узлов.

схема соединения сб

Если же фотоэлементов, секций — две или больше, то возможны несколько модификаций соединения солнечных панелей между собой:

  • параллельное соединение солнечных панелей. Подключаются между собой аналогичные по полярности клеммы. На выходе получаем 12 В;
  • последовательное соединение солнечных панелей: «+» первой панели к «−» второй. Оставшийся «−» первой и «+» второй — на контроллер. На выходе получим 24 В;
  • самая оптимальная схема последовательно-параллельная, комбинация. Предполагает наличие отдельных групп фотоэлементов. Внутри секции панели объединены параллельно. Сами же группы — последовательно. На выходе получим самый оптимальный результат.

схема параллельного соединения

Ниже схематически параллельная, последовательная и смешанная схемы как правильно подсоединить панели между собой:

как правильно подсоединить панели между собой

Параметры и характеристики элементов

Схема, порядок подключения, монтажа солнечных батарей загородного дома предполагает правильное соотношение всех элементов системы, совпадение их характеристик — все части должны подходить друг к другу по своим техпараметрам. Это актуально, если покупается не комплект, а детали по отдельности.

Контроллер

Рассмотрим, по каким параметрам подбирают узел мониторинга заряда аккумуляторов.

Мощность массива панелей

Требуется соответствие напряжению: номинальному (рабочее, замкнутое на нагрузку) и открытому контуру (без нагрузки, холостой ход).

Изделие должно выдерживать наибольшую силу входного тока от СБ (это же величина при режиме КЗ) — данный пункт редко обозначается инструкцией. Чтобы вычислить значение, надо узнать номинал контроллерного предохранителя и исчислить ток КЗ панелей контура. Для гелиопанелей последний указывается, как правило, всегда и он выше такового максимального рабочего (номинального), который также надо учесть. Это ток подсоединенного контура фотоэлементов, вырабатываемый ими при нормальной эксплуатации, и он ниже указанного по ТД для контроллера (производители там прописывают максимальное значение).

контроллер

Номинал по мощности. Это произведение рабочего напряжения на такой же ток фотогальванических модулей. Их мощность, объединенных с контроллером, должна сравниваться с этим номиналом или быть ниже, но не больше, иначе рассматриваемый узел, если он без предохранителя, перегорит. Но обычно такая защита есть, рассчитанная на перегруз в 10–20 % на протяжении 5–15 мин.

Напряжение солнечных модулей и АКБ

Стандартно есть модели на 12, 24 В и на два эти показатели с автопереключением. Например, пользователь может выбрать первую модель, если сделано соединение между собой нескольких панелей последовательно (в таком случае выдадут 12 В). Но, конечно же, лучше выбирать универсальное устройство.

Указанные цифры могут быть слишком малыми для мощных систем. Чтобы получить желаемую мощность, приходится ставить больше панелей и аккумуляторов, делая из них параллельные контуры. Сила тока значительно возрастает, что ведет к перегреву кабеля, электропотерям. При этом надо увеличивать сечение жил. Возникает потребность в чрезвычайно дорогих контроллерах под высокие токи.

мррт т20

Для исключения возрастания числа Ампер узлы мониторинга для мощных сборок выпускают под номинальное раб. напр. на 36, 48, 60 В, то есть кратно 12 В, чтобы гальванические модули можно было соединять последовательно. Такие контроллеры создают только для технологий зарядки ШИМ. У них вх. номин. напр. от панелей и номин. напр. контура АКБ должно сравниваться, например, 12 от СБ = 12 В к АКБ, 24 = 24 В, 48 = 48 В.

Контроллеры типа МРРТ работают с равным входным напряжением или в несколько раз большим, кратности 12 В нет. Обычно они рассчитаны на вход от панелей 50 В, сложные модели (мощные системы) могут быть до 250 В. Надо учитывать, что заводы указывают макс. вх. напр., и при подсоединении последовательно гальванических модулей надо складывать их макс. напр. (оно же «холостого хода»). Если проще сказать, то вх. макс. напр. любое от 50 до 250 В в зависимости от конкретного экземпляра. А номинал или миним. вх. напр. будет при этом 12, 24, 36, 48 В. При этом вых. напр. с АКБ у моделей МРРТ стандартное, может быть с автоопределением и поддержкой указанного выше диапазона вольтажа, а иногда и 60 или 96 В.

Модели МРРТ могут быть очень мощными с вх. напр. от гелиосистемы на 600–2000 В.

Максимальный входной ток и ток заряда АКБ

При ШИМ контроллере макс. вх. ток от фотоэлементов переходит в зарядный ток аккумуляторов, то есть узел не может заряжать большим значением ампер, чем производит соединенная с ним система. У МРРТ все по другому — вх. ток модулей и выходной для заряда батарей имеют разные характеристики, но они могут быть и равными, если номинал по напряжению модулей равен такому же номиналу АКБ, но тогда нет смысла в преобразовании МРРТ, эффективность падает. Первая характеристика должна превышать вторую в 2–3 раза. Если она ниже больше чем двухкратно, например, в полтора раза, то результативность критически падает, то же касается, когда превышает трехкратно. Ток на входе всегда будет равен или меньшим, чем таковой макс. вых. заряда аккумуляторов.

Читайте также  Выбираем лучший уличный светодиодный светильник на солнечных батареях

м20

Из вышеуказанного следует, что МРРТ надо подбирать по максимальному заряду аккумуляторов. Но чтобы данный ток не превысить, в инструкции прописывается максимум мощности подсоединяемых модулей при номин. напр. контура АКБ. Пример для контроллера МРРТ на 60 А: 800 Вт при напр. АКБ 12 В, 1600 — 36 В, 2400 Вт — 48 В и так далее.

Максимум нагрузки, зарядной ток, количество АКБ

Максимальная нагрузка, она же зарядной ток для аккумуляторов — характеристика не второстепенная.

Максимум мощности на выходе контроллера учитывается как с его стороны, так и со стороны аккумуляторов. Например, есть комплект последних с большой емкостью, для зарядки в течение дня узел должен выдать нужное значение. И такая же характеристика и возможности у гальванических элементов, естественно, должны быть не меньшими. Если параметры и узла мониторинга, и панелей будут способными удовлетворить потребности блока АКБ, то он не успеет зарядиться на протяжении дня, что будет причинять при постоянной нагрузке еще большую разрядку, и так регулярно, что приведет к быстрому износу.

схема 8

Ситуация, если АКБ с небольшой емкостью допустима. Возможности современных контроллеров нивелируют данный нюанс.

Но также рассмотрим проблемы, которые были у старых, или есть у низкокачественных, простых контроллеров. Их надо было подбирать с равной мощностью. При этом для АКБ макс. зарядной ток не должен был быть выше 30% от номинала емкости, то есть, если последняя 100 АЧ, то данный параметр не выше 30 А. При избыточной мощности системы контроллер заряжал бы аккумуляторы даже после их полного наполнения, без понижения зарядных Амперов, напряжения. Электролит при этом бы вскипал.

Современные образцы снабжены встроенной микросхемой, следящей за параметрами. В их микросхему прописывают программу заряда, управление осуществляется реле отключения. Такое изделие способно осуществлять настройку тока, напряжения заряда.

Тип аккумуляторов

Разные по химическому составу АКБ отличаются своим реагированием на ток, у них свои программы зарядки с несколькими алгоритмами. Контроллер настраивает процесс, напряжение, количество Ампер в соответствии с указанным, в выставленном диапазоне.

Тип аккумуляторов

Чаще применяют стандартные контроллеры с широтно-импульсной модуляцией (ШИМ или PWM). Есть также более качественные MPPT модели с технологией определения точки максимума по мощности от имеющегося массива панелей, надо сказать, что и они работают с ШИМ технологией: сначала такой узел отбирает максимальную величину, а далее, применяя ШИМ, осуществляет преобразование, зарядку АКБ по установленной программе.

аккумулятор глубокого разряда

Выбирают изделие именно с программой под имеющийся типа АКБ: щелочные, никелевые, литиевые (со своим блоком управления). Самые простые модели контроллеров имеют 1 или 2 программы для АКБ свинцово-кислотных, негерметичных, герметичных гелевых или AGM.

Опциональность

Наиболее затребованными являются такие функции (вырезка из характеристик товара интернет магазина):

Опциональность

Тип регулировки, трансформации напряжения

По данному параметру подбирают модели ШИМ или MPPT. Вкратце мы объяснили, как они функционируют. Если упростить, то для недорогих систем стандартных мощностей берут первые. Вторые — более качественные, для дорогих или мощных сборок.

Сборка, угол наклона

Саму установку, как соединять солнечные панели опишем вкратце, так как крепления и прочие нюансы также отдельные темы. Монтаж состоит в закреплении панелей на каркасе, есть несколько типов фиксаторов, кронштейнов: на шифер, на металл, черепицу, скрытые на обрешетку крыши.

Сборка

Опорные рейки, зажимы, прижимы (концевые и центральные) направляющие покупаются или есть в комплекте для выбранного варианта установки.

угол наклона

Соединяющие стыковые элементы создают из фиксирующих реек каркас. Применяют также клеммные элементы и держатели для жил — они объединяют алюминиевые рамки и заземляют их, фиксируют кабели.

Соединяющие стыковые элементы

Если монтаж производится на крышу с наклоном, то оптимальный угол для панелей 30… 40° в северных широтах больше, например, 45°. В общем, для самоочистки модулей дождем угол должен быть от 15°.

на крышу с наклоном

Указанные позиции создают опорными профилями, часто делают удобную сборно-разборную регулируемую, поворачивающуюся конструкцию.

Указанные позиции

При неравномерно освещении массива, панель на более светлом месте выдает больший ток, который частично расходуется на нагрев СБ нагруженных меньше. Чтобы исключить такое явление, используют отсекающие диоды, впаиваемые между плоскостями с внутренней стороны.

Читайте также: солнечные батареи для дачи (электроснабжение и освещение), выбор необходимых дополнительных устройств.

Провод

Подключение солнечных панелей, соединение их между собой делается кабелем с жилой сечением от 4 мм² — это стандартный минимум. Ниже этой цифры опускаться не рекомендовано, хотя иногда применяют и 2.5 мм², но это уже крайний случай (если модуль один, маломощный).

Подключение солнечных панелей

Можно взять толще — электропотери при этом не увеличиваются, а даже, наоборот, уменьшаются, так как снижается сопротивление, но цена возрастет намного. В сети есть специальные калькуляторы.

сечение кабеля

Провод должен быть стойким к холоду и огню (−30…+120° C), с надежной изоляцией, устойчивой к ультрафиолету. В спецмагазинах продаются уже «заточенные» под СБ кабели.

таблица сечения кабеля

Инвертор

Способы подключения солнечных батарей могут быть разными, но подбор параметров частей системы имеет общие принципы. Рассмотрим, как подобрать инвертор для СЭС разных типов.

инвертор для СЭС

Электростанция полностью автономного типа. Такая система не подключена к сети Энергосбыта (внешней магистрали), пользователь получает все электричество только от панелей. Подойдет инвертор off-grid. Эти автономные модели могут быть одно и трехфазными, способны преобразовывать постоянный токи разного вольтажа 12, 24, 48, 96 В и выше. Данные изделия самые дешевые (25–600 долл.), но это не означает их неэффективность — для не особо требовательной сборки указанного типа они подойдут, нет смысла брать более дорогие изделия, так как их потенциал не будет использоваться.

Электростанция полностью автономного типа

Схема с подключением к центральной сети. СЭС работает как автономно, так и совместно с главной магистралью. Но без аккумуляторов. Тут подойдет инвертор on-grid:

  • регулирует забор электричества, но не из АКБ, а из сети Энергосбыта, если модули не выдают достаточного его количества;
  • отправляет излишки продуцируемой энергии в центральную сеть, например, для продажи «по зеленым тарифам».

Стоимость изделия on-grid 200–20 000 $. Зависит от мощности конкретной модели, например, для устройства на 3–6 кВт — 2000 $, на 1000 кВт — 15 000 $ и выше. Для дома хватит 5 кВт.

состав сэс

Аккумуляторно-сетевая СЭС — самый распространенный оптимальный тип: вырабатывается энергия для запитывания приборов дома, излишек накапливается в АКБ, которые отдают заряд ночью и/или когда модули не справляются с нагрузкой, а также в центральную сеть для продажи. Если система из-за возросших потребностей не справится с нагрузкой, то предполагается забор энергии из магистрали Энергосбыта. Для таких условий подойдет модель hybrid (с сетевыми функциями). Цена начинается с 500–600 $ и до около 20 000 $.

Иные параметры

Дальше кратко подбор инвертора по иным критериям, которые необходимо учесть перед тем, как подключить солнечную панель.

подбор инвертора

  • 12 В /600 Вт;
  • 24 В/ 600…1500 Вт;
  • 48 В/ больше 1500 Вт.

как работает инвентор

Количество инверторов

Теоретически 1 прибора, если он подобран правильно под мощность, другие параметры, хватит для всей СЭС. Но при большом количестве пластин в нескольких линях желательно на каждую ставить свой инвертор. Причина в том, что нестабильность одной ветки (расположенность на чуть ниже освещаемой стороне) негативно влияет на общий инвертор, КПД понизится. А с отдельными такими устройствами этот недостаток нивелируется.

Количество инверторов

Хороший вариант — модель для нескольких отдельных MPPT входов (2– 4 и больше). Но цена такого оснащения часто неоправданно высокая.

Источник https://forum.solnechnye.ru/viewpost/232/

Источник https://nova-sun.ru/solnechnye-paneli/solnechnye-paneli-bez-akkumulyatora

Источник https://vashumnyidom.ru/elektropitanie/alternativnaya-energiya/sxema-podklyucheniya-solnechnyx-batarej.html

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: